#### UNIVERSITY OF TWENTE.





#### Transverse, axial and torsional strain in **REBCO** tapes; experiments and models

A. Nijhuis<sup>1</sup>, K. Ilin<sup>1</sup>, K. A. Yagotintsev<sup>1</sup> P. Gao<sup>1</sup>, J. Kosse<sup>1</sup>, W. A. J. Wessel<sup>1</sup>, S. Otten<sup>1</sup>, C. Zhou<sup>2</sup>, T.J. Haugan<sup>3</sup>, D.C. van der Laan<sup>4</sup>



- <sup>1</sup> University of Twente, Faculty of Science & Technology, The Netherlands
- <sup>2</sup> ITER International Organisation, Cadarache, France
- <sup>3</sup> US Air Force Research Laboratory, USA
- <sup>4</sup>Advanced Conductor Technologies and University of Colorado, USA







#### **Outline**

- Introduction
- Tape model and experiments
- CORC cable model, work in progress
- Summary



All samples - SuperPower SCS 4050 tape





#### **CORC** cable FE modeling steps

Step 1

 Tape material thermalmech properties

Step 2

 Tape production (different T process)





Step 3

• Tape winding to CORC @ RT



Step 4

CORC bending to coil@ RT



Step 5

• Cooling to operating  $T_{op}$  (77 K)



Step 6

Electromagnetic load
 @ T<sub>op</sub>







#### Modeling: tape initial state



- Substrate (Hastelloy C-276)
- Copper (Electroplating)
- REBCO

Buffer and silver layers excluded from model (minor influence on tape mechanical behavior)



Model: residual strain in REBCO layer at RT – 0.17 %.

Cooling down to 77 K increases compressive strain further to  $\sim -0.24$  %.



#### Tape strain test setups







Combined controlled torsion + tensile axial stress



Transverse stress with different loading profiles





#### Simulation and experiment: tensile

Geometry: FE mesh and boundary conditions



After determining the component proerties, good agreement tensile load experiments and modeling results at RT and 77 K.

Critical intrinsic tensile strain = 0.45%. (neutron diffraction experiment K. Osamura et al.).

Results FEM and experiment at 77 K.







### Simulation and experiment: tensile + torsion

FEM simulation: Tensile + Torsion at 77 K, with longitudinal strain in REBCO layer

FEM computation: critical strain in REBCO layer as a function of applied external tensile strain and applied torsion strain at 77 K

Experimental: I<sub>c</sub> measurement with 10 μV/m criterion (less sensitive with increasing torsion)





## **FEM transverse load** Tape 1.5 mm Tape axial direction







UNIVERSITY OF TWENTE.

ReBCO



#### Tape thickness variation, transverse stress







4 mm pushing head (40 µm Cu)

- Copper thickness not uniform over tape width.
- How much is influence of copper thickness, how much of inhomogeneity?



#### FEM transverse load, thickness copper





In plane strain in REBCO layer calculated using 100 µm copper thickness.

- The strain concentration areas are localized at boundaries of the pushing head
- Copper starts flowing in outward direction, increasing strain in REBCO plane



#### **Transverse stress SEM micrographs**















#### Transverse load, FEM versus experiment



Critical force as a function of copper layer thickness at 77K. FEM model and experimental results.







#### Transverse load: Cu thickness & profiles





Both, copper layer thickness and surface homogeneity play a role, thickness-Cu most.



# CORC cable D.C. van der Laan, SUST 22, 065013 (2009).

Cable winding machine



Advanced Conductor Technologies LLC www.advancedconductor.com



#### CORC cable FE modeling: cool down





#### Bending one layer CORC cable (3 tapes)

Variable parameter:

μ – friction coefficient tape-core interface



Strain along tape direction in REBCO at cable radius R = 200 mm and  $\mu = 1$  (cable core 6 mm)



Bending R for  $\varepsilon$ =0.45% versus friction coefficient

For  $\mu$  = 0.2 and 0.3 no convergion reached in computation

Work in progress .... but use of lubricant to reduce  $\mu$  seems a good idea ...



#### **Summary**

- Systematic studies performed on SCS4050 REBCO tape under tensile, torsion and transverse load.
- Tape FE model validated against experiments.
- ➤ Homogeneity of tape surface but mostly thickness of copper layer plays significant role in allowable transverse peak load.
- CORC modeling in progress for cable and core optimization.



K Ilin, K A Yagotintsev, C Zhou, P Gao, J Kosse, S J Otten, W A J Wessel, T J Haugan, D C van der Laan, and A Nijhuis, "Experiments and FE modeling of stress–strain state in ReBCO tape under tensile, torsional and transverse load", Supercond. Sci. Technol. 28 (2015) 055006 (17pp) doi:10.1088/0953-2048/28/5/055006