

Design of an improved high-cooling-power 4.2 K stage G-M cryocooler and helium compressor

Xihuan Hao

Advanced Research Systems, Inc.

July 01, 2015

NEW!

DE215S COLD HEAD (pneumatic-drive)

1.75 W @ 4.2 K, Min. Temp. < 2.7 K

ARS-20 HELIUM COMPRESSOR

Contents

3

➤ With broad applications in low temperature superconductor, magnetic resonance imaging (MRI), infrared detector and cryogenic electronics, the development of a high performance 4.2 K two stage cryocooler is of great importance.

➤ Given the specific demands of some of these applications—for example, MRIs run 24 hours a day, 365 days per year—the 4.2 K two stage cryocooler's cooling efficiency, stability, reliability and service life are critical factors.

Pneumatic-drive

CECICMC

Contents

- 2 Experimental set-up
- 3 Test results
- **Conclusions**

FIGURE 1. Schematic diagram of the experimental setup.

Two options!

FIGURE 2. DE215S coldhead outline drawing

Regenerator materials

Hot end

2nd stage regenerator

Hot end

FIGURE 3. Regenerator packing methods.

Contents

Displacer stroke and operation speed

FIGURE 4. Plots of minimal temperatures of second stage as a function of operation speed.

Displacer stroke and operation speed

FIGURE 5. Plots of second stage cooling power as a function of temperature (driven by ARS-10).

Initial charge pressure

FIGURE 6. Plots of minimal temperatures of cold head as a function of charge pressure.

Initial charge pressure

FIGURE 7. Plot of second stage cooling power at 4.20 K as a function of charge pressure.

Input power

FIGURE 8. Compressor outline drawings

ARS-20

Dimensions (W x L x H):

ARS-10: 19 x 21 x 26 in

ARS-20: 20.5 x 24.5 x 33.5 in

Weight:

ARS-10: 250 lb. (113 kg)

ARS-20: 390 lb. (177 kg)

Gas flow rate (60 Hz):

ARS-10: 118 Nm³/h (300 Psi / 100 Psi)

ARS-20: 190 Nm³/h (300 Psi / 100 Psi)

Note: the gas flow rate is converted into values at atmospheric pressure (0 C)

Motor input power (60 Hz):

ARS-10: 7 kW (300 Psi / 100 Psi)

ARS-20: 12 kW (300 Psi / 100 Psi)

CEC/ICMC

<u>Input power</u>

FIGURE 9. Comparisons of second stage cooling powers driven by ARS-10 and ARS-20 Comp.

Contents

- 2 Experimental set-up
- 3 Test results

Conclusions

➤ A high efficiency 1.5 W/4.2 K pneumatic-drive G-M cryocooler has recently been designed and developed by ARS. A typical cooling power of 1.50 W/4.2 K has been achieved driven by ARS-10 compressor. A maximal cooling power of 1.75 W/4.2 K has been achieved driven by new developed ARS-20 compressor in test runs.

➤ The displacer stroke and operation speed are both critical to the design of the 4.2 K stage G-M cryocooler.

➤ The life-time tests on the ARS-20 compressor and DE215S cold head are on the way.

