Coupled Tests of the Closed Cycle Dilution Refrigerator and ³He Compressor for Space

```
    G. Vermeulen<sup>1</sup>
    S. Triqueneaux <sup>1</sup>
    H. Sugita <sup>2</sup>
    Y. Satoh <sup>2</sup>
    K. Sawada <sup>2</sup>
    K. Mitsuda <sup>2</sup>
    S. Martin <sup>5</sup>
    P. Camus <sup>1</sup>
    K. Shinozaki <sup>2</sup>
```

¹Néel Institute, CNRS

²JAXA

³Sumitomo Heavy Industries

⁴CNES

⁵Air Liquide

CEC-ICMC-2015, 2015/06/28 – 2015/07/02, Tucson

Motivation

Planck: ³He-⁴He Open Cycle Dilution Refrigerator (OCDR)

- \bullet 3 He in + 4 He in \implies 3 He- 4 He out and rejected into space
- life time + # He on satellite fix: $\dot{Q} = 0.2 \,\mu\text{W}$ at $T = 100 \,\text{mK}$

Motivation

Planck: ³He-⁴He Open Cycle Dilution Refrigerator (OCDR)

- 3 He in + 4 He in \implies 3 He- 4 He out and rejected into space
- life time + # He on satellite fix: $\dot{Q} = 0.2 \,\mu\text{W}$ at $T = 100 \,\text{mK}$

Future:
$$\dot{Q} = 1 \,\mu\text{W}$$
 at $T = 50 \,\text{mK} \implies \text{Closed Cycle DR (CCDR)}$

- 1 K isotope separator to circulate 3 He and 4 He \implies 3 He pump
- Negative Gravity: sponge confines liquid-vapor interface (NG-CCDR)

Motivation

Planck: ³He-⁴He Open Cycle Dilution Refrigerator (OCDR)

- ${}^{3}\text{He in} + {}^{4}\text{He in} \implies {}^{3}\text{He-}{}^{4}\text{He out and rejected into space}$
- life time + # He on satellite fix: $\dot{Q} = 0.2 \,\mu\text{W}$ at $T = 100 \,\text{mK}$

Future:
$$\dot{Q} = 1 \,\mu\text{W}$$
 at $T = 50 \,\text{mK} \implies \text{Closed Cycle DR (CCDR)}$

- ullet 1 K isotope separator to circulate ${}^3{
 m He}$ and ${}^4{
 m He}$ \Longrightarrow ${}^3{
 m He}$ pump
- Negative Gravity: sponge confines liquid-vapor interface (NG-CCDR)

Candidates for space qualified pump

- ³He adsorption pump by Twente University (next talk)
- pump based on ³He compressor for JAXA 1.7 K JT

Goal

breadboard test of NG-CCDR & JAXA pump

NG-CCDR setup is ...

upside-down OCDR with . . .

- upside-down OCDR with . . .
- mixture return capillary to still with sponge to confine liquid; orifice to reduce ⁴He film flow

- upside-down OCDR with . . .
- mixture return capillary to still with sponge to confine liquid; orifice to reduce ⁴He film flow
- still pot with pumping line

- upside-down OCDR with . . .
- mixture return capillary to still with sponge to confine liquid; orifice to reduce ⁴He film flow
- still pot with pumping line
- capacitive liquid level gage

- upside-down OCDR with . . .
- mixture return capillary to still with sponge to confine liquid; orifice to reduce ⁴He film flow
- still pot with pumping line
- capacitive liquid level gage
- ³He gas out from sponge

- upside-down OCDR with . . .
- mixture return capillary to still with sponge to confine liquid; orifice to reduce ⁴He film flow
- still pot with pumping line
- capacitive liquid level gage
- ³He gas out from sponge
- 1.7 K pot (e.g. SPICA)

- upside-down OCDR with . . .
- mixture return capillary to still with sponge to confine liquid; orifice to reduce ⁴He film flow
- still pot with pumping line
- capacitive liquid level gage
- ³He gas out from sponge
- 1.7 K pot (e.g. SPICA)
- ³He in. 2 HX. 1 Z

- upside-down OCDR with . . .
- mixture return capillary to still with sponge to confine liquid; orifice to reduce ⁴He film flow
- still pot with pumping line
- capacitive liquid level gage
- ³He gas out from sponge
- 1.7 K pot (e.g. SPICA)
- ³He in. 2 HX. 1 Z
- ⁴He pump, 2 HX, 2 Z

- upside-down OCDR with . . .
- mixture return capillary to still with sponge to confine liquid; orifice to reduce ⁴He film flow
- still pot with pumping line
- capacitive liquid level gage
- ³He gas out from sponge
- 1.7 K pot (e.g. SPICA)
- ³He in, 2 HX, 1 Z
- ⁴He pump, 2 HX, 2 Z
- remaining Ts and Qs

- upside-down OCDR with . . .
- mixture return capillary to still with sponge to confine liquid; orifice to reduce ⁴He film flow
- still pot with pumping line
- capacitive liquid level gage
- ³He gas out from sponge
- 1.7 K pot (e.g. SPICA)
- ³He in. 2 HX. 1 Z
- ⁴He pump, 2 HX, 2 Z
- remaining Ts and Qs
- HX-DR small due to geometry
 - \implies no $\dot{Q} = 1 \,\mu\text{W}$ at 50 mK

Pre-test CCDR status

- liquid confinement works
- $T_{\text{mo}} = 75 \,\text{mK} 80 \,\text{mK}$
- $p_{\text{still}} = 0.3 \,\text{mbar} 5.0 \,\text{mbar}$
 - $p_{\text{still}} \uparrow$ is more difficult
 - $\dot{n}_4 = 160 \, \mu \text{mol s}^{-1} \times 2 \, \text{low}$
- $T_{POT} = 1.65 \text{ K is OK at}$ $\dot{n}_3 = 21 \, \mu \text{mol s}^{-1} - 27 \, \mu \text{mol s}^{-1}$ ×2 high

Pre-test CCDR status

- liquid confinement works
- $T_{mo} = 75 \, \text{mK} 80 \, \text{mK}$
- $p_{\text{still}} = 0.3 \, \text{mbar} 5.0 \, \text{mbar}$
 - $p_{\text{still}} \uparrow$ is more difficult
 - $\dot{n}_4 = 160 \, \mu \text{mol s}^{-1} \times 2 \, \text{low}$
- $T_{POT} = 1.65 \,\mathrm{K}$ is OK at $\dot{n}_3 = 21 \, \mu \text{mol s}^{-1} - 27 \, \mu \text{mol s}^{-1}$ ×2 high

JAXA pump status: $P < 40 \,\mathrm{W}$

\dot{n}_3 $\mu \mathrm{mol}\mathrm{s}^{-1}$	<i>p</i> _{in} mbar	p _{out} mbar
20.3	7.8	208
30.7	8.8	195

CCDR with ³He switch to JAXA pump or CNRS-GHS

Key tests in plan

Test conditions

- ullet set $T_{
 m pot} pprox 1.71\,{
 m K}$
- only JAXA pump circulates ³He and ⁴He through CCDR

Key tests

- **1** cool from $15 \text{ K} \rightarrow 0.07 \text{ K}$
 - $\bullet~15\,\mbox{\,K} \rightarrow 3\,\mbox{\,K}$ by JAXA pump pushing gas through working $1.7\,\mbox{\,K}$ POT
 - \bullet 3 K \to 1 K by condensing $^3\text{He-}^4\text{He}$ using JAXA pump
 - 1 K ightarrow 0.07 K by applying \dot{Q}_{fp} to drive \dot{n}_4 while JAXA pump drives \dot{n}_3

 \dot{Q}_{fp} worked after temporarily storing $^{3}\mathrm{He}$ in tank of CNRS-GHS

- ② at 70 mK: step \dot{Q}_{mo} to measure cooling power
- $oldsymbol{0}$ at 70 mK: step Q_{fp} to check still and fountain pump behavior

only time to show data of test 2 and 3

Test 2: cooling power (JAXA pump + $T_{pot} = 1.71 \, \text{K}$)

Fit simple 1st order model

- $A\dot{n}_4 T_{\text{load}}^2 = \dot{Q}_{\text{mo}} + \dot{Q}_{\text{leak}}$
 - $\dot{n}_4 = 236 \, \mu \text{mol s}^{-1}$ 2nd law using Q_{fp} and T_{fp}
 - $A = 2.9 \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^2$ OK with theory
 - $Q_{leak} = 3.3 \, \mu W$ OK with Kevlar suspension

Test 3: FP and STILL (JAXA pump $T_{pot} = 1.71 \, \text{K}$)

Step Q_{fp} and look at

- $Q_{\rm fp}$ and $T_{\rm fp} \implies \dot{n}_4$
- T_{mo} and T_{load} versus \dot{n}_4
- impact of \dot{n}_4 on \dot{n}_3
- OK: liquid confinement
- OK: x_{liquid} and x_{vapor}

Test 3: FP and STILL (JAXA pump+ $T_{pot} = 1.71 \,\text{K}$)

$$\dot{Q}_{\mathsf{fp}}$$
 and $\mathcal{T}_{\mathsf{fp}} \implies \dot{n}_{\mathsf{4}}$

2nd Law of Thermodynamics \implies

$$\dot{n}_4 = \frac{Q_{\rm fp}}{T_{\rm fp} s_{40}(T_{\rm fp})}$$

Test 3: FP and STILL (JAXA pump+ $T_{pot} = 1.71 \, \text{K}$)

 \dot{Q}_{fp} and $T_{\mathrm{fp}} \implies \dot{n}_{\mathrm{4}}$ 2nd Law of Thermodynamics \implies $\dot{n}_{\mathrm{4}} = \frac{\dot{Q}_{\mathrm{fp}}}{T_{\mathrm{fp}} s_{\mathrm{40}} (T_{\mathrm{fp}})}$

Test 3: FP and STILL (JAXA pump+ $T_{pot} = 1.71 \, \text{K}$)

Test 3: FP and STILL (JAXA pump+ $T_{pot} = 1.71 \, \text{K}$)

Conclusion

JAXA pump specifications

- extrapolation of these tests: $\dot{n}_3 = 45 \, \mu \text{mol s}^{-1}$ at $\dot{n}_4 = 400 \, \mu \text{mol s}^{-1}$
 - \dot{n}_4 =400 µmol s⁻¹ needed for 1 µW at 50 mK
 - \dot{n}_3 is 50 % higher than our expectations
- $p_{\text{in,JAXA}} = 9 \text{ mbar affects}$:
 - cryogenic performance
 - starting fountain pump

Conclusion

JAXA pump specifications

- extrapolation of these tests: $\dot{n}_3 = 45 \, \mu \text{mol s}^{-1}$ at $\dot{n}_4 = 400 \, \mu \text{mol s}^{-1}$
 - \dot{n}_4 =400 µmol s⁻¹ needed for 1 µW at 50 mK
 - \dot{n}_3 is 50 % higher than our expectations
- $p_{in,JAXA} = 9$ mbar affects:
 - cryogenic performance
 - starting fountain pump

Further CCDR development

- NG-CCDR prototype for X-IFU with:
 - 1 µW at 50 mK
 - 20 μW at 300 mK
- demonstration model
- engineering model, designed as CEA-SBT ADR replacement (Air Liquide)