

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

# **Stainless Steel to Titanium Bimetallic Transitions**

Joshua Kaluzny CEC-ICMC 2015 29 June 2015

## **Overview**

- Introduction
- Base materials
- Test samples
  - Tensile test
  - Charpy impact test
  - Polished sample
- Transition tube
  - Analysis
  - Tests
- Conclusion



## Introduction

- Used to connect titanium vessels to stainless steel piping
  - Connection holds superfluid helium during operation
- Early development and use in Spallation Neutron Source at Jefferson Lab
  - Added tantalum layer between metals
  - Increased length of metal on either side of the joint
  - Heatsink near joint during welding
  - Weld procedures to limit heating
- LCLS-II vessel includes three transitions
  - One large transition
  - Two small transitions



#### **Base Materials**

- 1 inch stainless steel plate
- 0.010 inch tantalum
- 1 inch titanium plate
- Explosion welded together by High Energy Metals, Inc.

| Ultimate strength of base materials |          |
|-------------------------------------|----------|
| Room Temperature (around 295 K)     |          |
| SS316L                              | 560 MPa  |
| Ti gr.2                             | 345 MPa  |
| Tantalum                            | 276 MPa  |
| Cryogenic Temperature               |          |
| SS316L (4K annealed)                | 860 MPa  |
| SS316L (4K 20% cold worked)         | 1734 MPa |
| Ti gr.2 (2 K)                       | 1117 MPa |
| Tantalum (70 K)                     | 1034 MPa |





## **Sample Testing**

- Block of material cut into 24 samples
- Samples sent to St. Louis Testing Laboratories, Inc.
  - Tensile test at 295 K and 4 K
    - Tensile samples were machined round by the testing lab
  - Charpy test at 295 K and 4 K
    - Charpy samples were notched by the testing lab
- One sample was polished to view joint





## **Tensile Test**

6

- Room temperature tests shown on top with break in the titanium
- 4 K tests shown on bottom with the break near the joint

| Tensile Test - Bond Ultimate Strength |          |
|---------------------------------------|----------|
| Test temperature - 295 K              |          |
| Sample #4                             | 789 MPa  |
| Sample #5                             | 788 MPa  |
| Sample #7                             | 774 MPa  |
| Test temperature - 4 K                |          |
| Sample #12                            | 1138 MPa |
| Sample #13                            | 1259 MPa |
| Sample #18                            | 1328 MPa |
|                                       |          |







# **Charpy Impact Test**

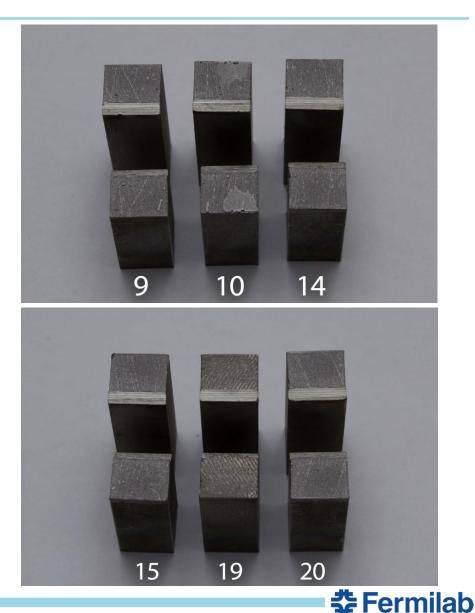
- Room temperature tests shown on top
- 4 K tests shown on bottom
- Break near joint for all samples (notched near joint)

 Charpy Test

 Test temperature - 295 K

 Sample #9
 9.5 ft-lbs (12.9 J)

 Sample #10
 6.0 ft-lbs (8.1 J)


 Sample #14
 7.5 ft-lbs (10.2 J)

 Test temperature - 4 K

 Sample #15
 2.0 ft-lbs (2.7 J)

 Sample #19
 2.0 ft-lbs (2.7 J)

 Sample #20
 1.5 ft-lbs (2.0 J)



7

# **Charpy Impact Test**

- Close up of Charpy impact test break
- One of the 4 K Charpy and tensile breaks occurred in the titanium near the joint







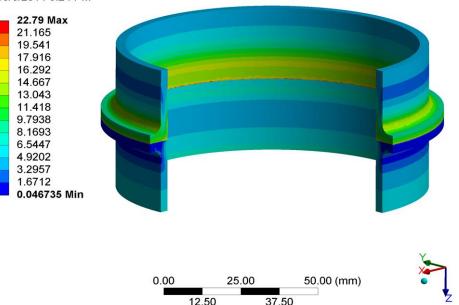
8

## **Polished Sample**

- A sample was polished on two perpendicular sides
- Polished samples show the waves in the explosion bonded joint
- The boundary in the titanium can also be seen in the samples

q








#### **Transition Tube Geometry and Analysis**

- The geometry for the large transition is shown
- The transition is flared out at the joint to increase the surface area of the explosion weld joint
- The stress in the transition is due to differential thermal contraction and internal pressure

C: 2PhaseHe\_Joint\_@2K+0.4MPaPressure Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1 10/6/2014 6:24 PM





## **Transition Tube Tests**

- The transition was welded into a test tube
- Tests performed
  - Radiograph joint
  - TIG weld cap and extension tube
  - Radiograph joint
  - Cold shock to 77K 12 times
  - Leak check
  - Radiograph joint





# Conclusion

- A bimetallic transition joint from titanium to stainless steel has been analyzed and tested
- The transition has been used in LCLS-II dressed cavity tests at Fermilab and Jefferson Lab
- The transition is part of the LCLS-II cryomodule design
- Future work
  - Tensile and Charpy test base material before and after explosion welding
  - Additional study on boundary in titanium near the joint

