UNIVERSITY OF TWENTE.

Test results of sorption-based helium-3 pump for a closed-cycle dilution refrigerator

Marcel ter Brake¹, Cris Vermeer¹, Hidde Norder¹, Johannes Burger², Harry Holland¹, Robert-Jan Meijer², Gerard Vermeulen³, S. Triquenaux⁴, Thierry Tirolien⁵

UNIVERSITY OF TWENTE.

Closed-Cycle Dilution Refrigerator Presented by Gerard Vermeulen

 $T < 50 \,\mathrm{mK}$

Closed-Cycle Dilution Refrigerator Presented by Gerard Vermeulen

"missing link": He-3 circulator pump

He-3 pump requirements

Circulation rate:

 $10 - 30 \mu mol/s$

(20 µmol/s assumed in study)

Suction pressure:

Outlet pressure:

Lifetime:

Mass (incl. electronics):

Heat sink available:

Max. pressure at 300 K:

Vibration levels:

1st resonance freq.:

Input power:

5 mbar

200 mbar

5 - 10 years

< 3 kg

100 mW at 15 K

+ 2 - 5 mW at 1.7 K

20 bar

20 g

> 100 Hz

< 30 W

Sorption cooler heritage at University of Twente

4.5 K helium cooler (CEC 2007)

14.5 K hydrogen cooler (CEC 2013)

Buffers for storing gas at 300K; Two buffers + restriction to dampen peak in out flow

Buffers for storing gas at 300K; Two buffers + restriction to dampen peak in out flow

T-controled lowpressure buffer for stabilizing flow (without T-control, flow varies ca.10%)

Check valves: requirements

Check valves:

Forward pressure drop: < 0.5 mbar (in 5 mbar suction valve)

Reverse leakage flow: < 1% of forward flow

Check valves: vibration tests

Sine vibration test

Frequency bandwidth: from 5 to 100 Hz

20 g from 20.5 to 60 Hz

8 g from 60 to 100 Hz

Sweep rate: 2 oct/min

Number of sweep:.....1

Number of axes:..... X on specimen n°2

Y on specimen n°7

Robust Random Vibration Test

Frequency bandwidth: from 20 to 2000 Hz Amplitudes: see table below

Duration: 2 minutes 30

Number of axes:..... X on specimen n°2

Y on specimen n°7

Frequency (Hz)	Amplitude (g²/Hz)
20	0.016
80	0.26
500	0.26
2000	0.065
Overall level	17 g _{rms}

UNIVERSITY OF TWENTE.

Check valves: leak test at 77 K before (open symbols) and after shaking (closed)

		gapheight (nm)			flowrate @ 1	15K (ug/s)		% forw flow (60 ug/s) @ 15K			
Seat #	Flap#	min	nom	max	min	nom	max	min	nom	max	
Assembly 7 @ 77K	7	204	400	494	0.1	0.6	1.1	0.2%	1.0%	1.8%	
Assembly 9 @ 77K	8	302	415	445	0.3	0.7	0.8	0.5%	1.1%	1.4%	
Assembly 4 @ 77K	3	293	410	656	0.3	0.7	2.5	0.4%	1.1%	4.1%	

Compressor design and realization

Carbon cell length 10 cm. Carbon pill diameter 9 mm, gap 2 mm (no gas-gap heat switch!) Pressure drop in cell and tubing (< 0.1 mbar); spacing between carbon pills

Measurement setup

 $\dot{m} = c p_{high}$ \rightarrow c is controlled so $p_{high}=200$ mBar on average Each cycle has a specific c

test experiments with He4 (sorption characteristics similar to He3)

- Low pressure stabilization at 5 mbar (optional)
- Only output is mass flow
- FOM for performance is mass flow/input powers

Test results of sorption pump

- Peak heating power = 4.0W
- Heating time = 28s
- Cycle time = 1800s
- $p_{low} = 5$ mbar (controlled through temperature of low pressure buffer platform)
- p_{high}= 200 mbar (controlled by mass flow)

Test results of sorption pump

Yes or No.... p_{low} control ??

With control:

P_{low} varies 0.5 mbar Power input doubles (60 to 120 mW)

Without control:

P_{low} varies 1,3 mbar Power input only for pump (60 mW)

	\	des	neat 8	/ 6	M (Lingar)	rias flow We	Tupay V	M. b lon	Purtoto	A tot lue	SIM Ratio	o KOM tot	Color Composion
1. Nominal settings 1: reference	1800	28	4	5	78,4	229-286	0,059	0,121	647	1260	0%	0%	
2. Nominal, no p_low control	1800	28	4	2,7-4	72,6	238-292	0	0,062	1167	1167	+80%	-7%	

What p_{low} variation is acceptable?

Test results of sorption pump Verification matrix

ID	Requirement	Short description	Measured Value	Achieved
F1	Flow rate: 10-30 µmol/s	Measured by a Bronkhorst flow controller at room temperature using He-4.	19.6 µmol/s	V
F2	Low pressure 5-10 mbar	Measured at room temperature by a MKS pressure transduces with a range of 100 mbar. Can be controlled to stable pressure by controlling the buffer temperature, accepting extra input power	Control at 5 mbar gives fluctuations of 4.6-5.1 mbar	>
F3	High pressure: 200 mbar	Measured at room temperature by a UNIK 5000 pressure sensor with a range of 350 mbar and improved accuracy	200 mbar (controlled)	V
F4	Flow stability +/- 10 %	Mass flow sensor at room temperature	75-81 μg/s, is within 10%	V
F5	External leak rate : < 10 ⁻⁶ mbarL/s	Helium leak test	Tested and achieved	V
F6	Outgassing: low	Design requirement		✓
S1	Life time: 5-10 years	No experiment, analysis only		>
S2	Mass: < 3 kg	Mass measured on component level	5.9 kg mostly buffers	NA
T3a	Heat sink temperature: 15 K	Cryogenic temperature sensor in feedback loop, also higher temperatures possible.	15 K controlled	>
T3b	Heat rejection at 15K: ≤ 100 mW	Heater power to control low pressure buffer platform and the heater power to the compressor will be measured and added.	121 mW	close
T5	Non-operating temperature: 223-323K	Design requirement only		>
M1	Pressure at 300 K: ≤ 20 bar	Filling pressure will be around 12 bar and filled mass will be measured	9.0 bar	>
M2	Vibration levels: 20g (Ariane 5 spectrum)	Design requirement, no measurements		V
M4	Minimum pressure : 0 bar (abs)	Design requirement, intrinsically tested		V
M5	First resonance frequency : > 100 Hz	Design requirement, no measurements		V

Conclusions and recommendations

Conclusions

- Pump delivers 19.6 µmol/s between 5 and 200 mbar
- Requirement on low-pressure stabilization is critically important
- Sensitivity analyses shows that only a higher low pressure increases pump performance (higher filling pressure)

Future activities

- Interfacing with dilution refrigerator (requirement on p_{low})
- Run with He-3
- Low-pressure buffer heater in the carbon (more direct control)
- Reduce peak heat load to heat-sink platform
- Analyze attainable reduction in size and mass

