

CEC-ICMC 2015

High Precision Interferometric Dilatometer For Cryogenic Environments

Outline:

- Quick about us
- Ingredients
- Cooking
- First results
- Conclusions & Outlook

attocube systems

Major ideas for the nano world

Founded in 2001

70 employees, 30% PhDs

Turnover 2013/14: ~ 15 Mio. €

'attocube's central mission is to deliver uniquely precise, elegant, and reliable products, thus solving the emerging challenges in worldwide nanotechnology applications.'

> 800 customers | > 40 countries | > 5000 positioners | > 180 microscope systems

111

Interferometric Dilatometer For Cryogenic Environments

About us

.

About us

.

attoDRY2100

Research Cryostats

Ingredients

2: Interferometric sensor

attoFPS

- + 3 channels: Measurement of erratic pitch and yaw movement
- + Easy integration and compactness (sensor heads with only Ø 1.2 mm)
- Position sensing at the sample level with 1pm of internal resolution
- + UHV compatibility, non-magnetic, radiation-hard, cryogenic compatibility
- Quick access to the displacement data with the software and USB

Ingredients

2: Interferometric sensor

Fabry-Pérot Sensor (FPS)

Sensor heads

attoFPS

A very stable and sensitive system

- 20 hours, sample time 100 Hz
- 77 mm titan cavity @ 3.8 Kelvin

standard deviation (sigma) 55 pm

Fiber-based distance sensing interferometry

Klaus Thurner,^{1,2,*} Francesca Paola Quacquarelli,¹ Pierre-François Braun,¹ Claudio Dal Savio,¹ and Khaled Karrai¹

¹attocube systems AG, Königinstraße 11a RGB, 80539 München, Germany

²Institute for Nanoelectronics, Technische Universität München, Theresienstraße 90, 80333 München, Germany *Corresponding author: klaus.thumer@attocube.com

Received 13 January 2015; revised 3 March 2015; accepted 3 March 2015; posted 4 March 2015 (Doc. ID 231603); published 31 March 2015

http://dx.doi.org/10.1364/AO.54.003051

Cooking

Working principle:

- Sample beam measures expansion or contraction of sample
- Reference beam measures expansion or contraction of cell
- Difference between the two signals yields the absolute change in length ΔL
- Calculate thermal or magnetic strain as ratio between ΔL and the initial length L₀

First results

*Clark, A. F. (1983). "Thermal expansion", Chapter. 3 in "Materials at Low Temperatures", eds. R. P. Reed and A. F. Clark, ASM International, Materials Park, Ohio

First results

First results

Conclusions & Outlook

- Proof of concept for miniature interferometric dilatometer compatible with cryogenic environment;
- Demonstrated resolution down to 1nm on mmsized samples (1 ppm);
- Your feedback

nikolay.tsyrulin@attocube.com

