Helium-Hydrogen PpT-x Measurements and Equation of State

<u>Presenter:</u> Ian Richardson (WSU)

Co-Authors:

Thomas Blackham (WSU), Jacob Leachman (WSU), Eric Lemmon (NIST)

Liquid Hydrogen as a Rocket Fuel

NASA's Space Launch System: Images from spacenews.com (above) and nasa.gov (right)

- Liquid hydrogen (LH₂) tanks are pressurized with gaseous helium
- Small amounts of helium dissolve into the liquid hydrogen
- Current models assume pure LH₂ properties
- No real fluid heliumhydrogen mixture model exists

Ideal Models

- Dalton's and Amagat's law are approximations for real-gas mixtures
- Dalton's law:
 - $P_m = \sum_{i=1}^k P_i(Tm, Vm)$
- Amagat's law:
 - $-V_m = \sum_{i=1}^k V_i(Tm, Pm)$

WASHINGTON STATE

Image from commons.wikimedia.org

Binary Mixture Fluid Classifications

- A Type I Fluid (methane ethane) Simple two phase fluid.
- B Type II (water phenol) Stable liquid-liquid phase.
- C Type III (helium hydrogen) Two distinct critical lines that never meet.

Type III Fluid Surface

- Complex fluid interactions require a real fluid model
- Need VLE and PpT-x experimental measurements

Literature Review

- Only Vapor-Liquid-Equilibrium (VLE) data available
- Need PpT-x measurements

WASHINGTON STATE

PpT-x Measurements

- Pressure: Paroscientific Digiquartz
 Composition: Gas Chromatography
- Temperature: Secondary Standard Density: Magnetic Suspension Microbalance Germanium RTDs

Washington State

² I. A. Richardson, J. W. Leachman, T. M. Blackham, S. G. Penoncello, AIP Conference Proceedings 1573, 1086-1091 (2014).

Validating Measurements with Parahydrogen

- Liquid pH₂ PpT measurements agree with pH2 EOS³ within 0.06% (above), early LN₂ agreed within 0.1%⁴.
- Conducted PpT-x measurement on helium-hydrogen mixtures from 17 K to 29 K for pressures up to 2 MPa.

WASHINGTON STATE R. Span et al. J. Phys. Chem. Ref. Data 29, 1361-1433 (2000).

Mixture Equations of State

Helmholtz Free Energy Equation

$$\alpha(\delta, \tau, \mathbf{x}) = \alpha^{0}(\rho, T, \mathbf{x}) + \alpha^{r}(\delta, \tau, \mathbf{x})$$

Ideal Equation

$$\alpha^{0}(\rho, T, \mathbf{x}) = \sum_{i=1}^{N} x_{i}(\alpha^{0}_{0i}(\delta, \tau) + \ln(xi))$$

Residual Equation

$$\alpha^{r}(\delta, \tau, x) = \sum_{i=1}^{N} \left(x_{i} a_{0i}^{r}(\delta, \tau) \right) + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \left(x_{i} x_{j} F_{ij} a_{ij}^{r}(\delta, \tau) \right)$$

Reduced Density

$$\delta = \frac{\rho}{\rho_{\rm c}(x)}$$

Reduced Temperature

$$\tau = \frac{T_{\rm c}(\boldsymbol{x})}{T}$$

He-H₂ Equation of State Comparisons to Experimental Measurements

Washington State

He-H₂ EOS Saturation Region

Future Work

- Does dissolved helium affect system level design and operation decisions?
 - Compare system
 performance assuming no
 helium dissolution and
 using the new He-H₂ EOS.
- Use new capabilities to develop mixture models for other cryogens (neonhelium, neon-hydrogen, hydrogen-deuterium etc.)

LH₂ storage tank model

Summary

- Conducted the first ever $P\rho T$ -x measurements of He- H_2 mixtures.
- Developed a reference quality mixture equation of state.
- This EOS will be used to determine if dissolved helium affects system level decisions.
- This work will be continued for other cryogenic mixtures.

Acknowledgements

NASA
• Dr. Stephen Barsi
(NASA – GRC)

National Institute of Standards and Technology

Dr. Mark McLinden

(NIST – Boulder)

NSTRF Grant NNX14AL59H

Pρ**T**-x Measurements

	Temperature	Pressure	Density	% He	% H2
Sample #	[K]	[PSI]	[kg/m^3]	[mol %]	[mol %]
2.1	16.83	141.6	76.34	0.76	99.24
2.2	20.86	159.0	72.18	1.33	98.67
2.3	24.88	154.0	66.63	1.33	98.67
2.4	28.88	156.3	58.81	0.74	99.26
2.5	16.83	310.0	77.30	1.42	98.58
2.6	20.86	303.7	74.05	2.64	97.36
2.7	24.87	311.8	69.17	3.62	96.38
2.8	28.9	305.2	62.04	3.35	96.65
2.9	16.84	44.4	75.43	0.44	99.56
2.10	19.85	51.8	71.96	0.29	99.71
2.11	22.87	55.0	68.21	0.25	99.75

WASHINGTON STATE