

Cryogenic System for Turkish Accelerator and Radiation Laboratory in Ankara

S. Crispel¹, P. Garcia-Rodiguez¹, J-M. Bernhardt¹, C. Gondrand¹, F. Durand¹, A. Aksoy²

¹ Air Liquide Advanced Technologies, France

² Ankara University Institute of Accelerator Technologies, Ankara, Turkey

CEC 2015

June 30th

Outline

- Framework of the project
- TARLA Facility
- Cryogenic Requirement
- The cryogenic system designed by ALAT
- Lay-out of the cryogenic system
- Cold compression solution
- Lessons learnt during project
- Conclusion

Framework of the project

- TARLA Facility: 1st of the Institute of Accelerator Technologies of Ankara University in Golbasi Campus (15 km south of Ankara)
- Purpose : Drive two FEL covering the range of InfraRed region (3-250 μm)
- FEL: Research in material science, nonlinear optics, semiconductors, biotechnology, medicine and photochemical processes.
- Also Electron beam will be used to generate Bremsstrahlung radiation

TARLA Facility

- Electron beamline subdivided in 3 parts :
 - Injector => High current continuous wave 250 kev
 - Main accelerating section => 2 SC accelerating modules (Linac 1&2) to 15-40 Mey
 - Transport lines to 2 independent undulators to generate FEL Radiation
- Cryogenic Area close to main facility but not affected by radiation environment

TARLA - CEC 2015

Cryogenic requirement from TARLA

- 1 CM (supplied by RI) => 2 x 9-cell TESLA Nb cavities (10 MV/m)
- Cryostat and mechanical tuning developed for ELBE project (collab. with Stanford Univ (Forschungszentrum Dresden/Rossendorf))
- Long-term experience and partnership between TAC and Dresden

Parameter	Unit	Cryom. I & II
Dynamic Heat Load (including cont.)	W	80
Static Heat Load (including cont.)	W	15
Operating Temperature (max/min)	K	2.1/1.8
Pressure Stability	mbar	± 0.2
Liquid Level Stability	1 LHe	± 2
Inventory	1	60

- Global solution => 220W@1.8K
- Controlled cool-down & warm-up
- Stand-by mode 40W@1.8K
- Liquefaction capacity with LN₂

The cryogenic system designed by ALAT

- A standard Helium Refrigerator : HELIAL MF
 - Delivering Helium@4.5K in a standard Dewar
 - Equipped with 2 Turbo-Expanders in series
 - Cool-down circuit for SC module
 - 2 screw compressors (80g/s) in parallel with standard ORS
- A 2K secondary Cold Box equipped with :
 - Cold Compressor
 - Coiled VLP Heat exchanger 8K-300K
 - Plate-Fin Heat Exchanger 2-4K
 - LN2 shield
 - Helium guard
- A vacuum pump group (Oerlikon-Leybold 5*[WS2001FU/SV750BF])
- Multi-channel transfer lines (ALAT manufacturing)
 from 2K VB to CMs (LN₂ shield)

TARLA - The He Refrigerator for the Turkish Accelerator and Radiation Laboratory

Cold Box 2

Purpose: Subcool Helium from 4,5K@1,01 bar to 1,8K@16 mbar to feed customer SRF modules.

Features & design:

- ALAT in-house Cold compressor
- Coil heat exchanger with only 3mbar of pressure drop
- Stainless steel tube heat exchanger 4,5 to 1.8K
- Thermally shielded with liquid nitrogen at 80K

Refrigerator Cold Box (CB1) Purpose: Supply liquid

Helium at 4.5K and 1.01 bar Features &design: - HELIAL MF with 2 ALAT 's C3 gas bearing turbines and a brazed aluminum Plate xchanger

Warm vacuum group

Purpose: Compress gas return from cold compressor outlet to atmospheric pressure to feed cycle compressors.

Features &design:

-5 oil lubricated pumping groups in parallel (rotary vane + roots) to cope with 10,7g/s

Cold Compress cold

Purpose: Compress cold gas return from 16mbar to 37mbar.

Features & design: ~40 000 tr/min ; 10g/s Magnetic bearings

(MCTL)

Features & design:

Liquid and gaseous Helium **Storages**

Purpose: Delivered compressed oil free Helium to the refrigerator Cold box.

- 500l Liquid Helium Dewar 1,01bar@4,5K
- 50m3 gaseous Helium buffer 20bar @ ambient T

Purpose: Deliver complessed oil-free Helium to the refrigerator Cold box. Features&design:

2x 50% oil lubricated screw compressors (DSD238) delivering

Cycle compressors

40q/s@14,5bar - Standard Oil removal

- 2x 9 m long each thermally shielded multi-lines

Multi Cryogenic Transfer Lines

1,8K@16mbar for SRF modules feed and gas

- Limited heat leaks and pressure drop

-Purpose: Transfer liquid Helium at

return from the modules to the CB2.

Lay-out of the cryogenic system

Some pictures

TARLA - CEC 2015

Cold compressor solution

- Long experience and internal know-how at AL.aT in Cryogenic machines
 - Turbo-expanders for He (Low T applications) and other industrial applications
 - Cold compressors (more than 40 references), for example :
 - JLAB
 - CEA
 - CERN

Standard, long lifetime, reliable, easy-tomaintain cryogenic rotating machines with large frame of operation and common design philosophy (Cold Compressor & Circulator)

- Cold compressor main features
 - Standard 13kW motor cartridge
 - 13kW @55000 rpm high speed synchronous motor
 - Five axis active magnetic bearings
 - 40 bar housing
 - Standard electrical cabinet
 - Customised parts: impeller and cryogenic shaft extension, scroll, diffuser and casing
 - For details please refer to poster C3PoE-01 (tomorrow 9-11 A.M.):

 Air Liquide latest developments of turbomachines: from design to commissioning (Cécile GONDRAND)

Operation of cold compressor for TARLA

Control strategy :

Nominal = 14 mbar, 3.7K, 10.5 g/s

- Vacuum pump group at full capacity
- Cold compressor adapting rotation speed to control upstream pressure
- System will be fully adapted to real heat loads and can be slowed-down to stand-by mode
- Operating points reachable with the designed machine: Flexibility

Lessons learnt during project

- Use of <u>standard</u> systems => Cost and Risk management
- Feedback from users
 - Rosendorf meeting with TAC-ELBE-R.I.-ALAT => Information on real operation at ELBE accelerator: cool-down phase, impurity management, control loops
 - Visit at CEA-Grenoble of 400W@1.8K test station
- 2K Process <u>design</u>
 - Flexibility of operation with combination of cold compressor and vacuum group
 - Sensitivity study to evaluate impact of component discrepancy : Vacuum pump can mitigate
- Manufacturing: VLP Coil heat exchanger: recover a strong experience for next projects
- Careful <u>follow-up</u> of vacuum pump manufacturer from specification to final tests: tightness, oil temperature, performance & good feedback from current projects (Neurospin & DESY)

Conclusion

- TARLA: 1st major Particle accelerator project in Turkey
- Air Liquide has developed a global solution based on standard modules :
 - Refrigeration system : HELIAL MF
 - Vacuum pump groups
 - Cold compression standard machine
- Standard solution for cold compression and circulation, first of a series: JT60, RAL, ...
- All equipment delivered as expected during spring 2015
- Start-up programmed this autumn in Ankara

Thank you for your attention

Contacts:

simon.crispel@airliquide.com (Standard Helium/Hydrogen product manager) cecile.gondrand@airliquide.com (Cryo-machines product manager)

