

Synthesis of Bi₂Sr₂CaCu₂O_x oxide precursor from nano-oxides and its relationship with multifilamentary wire transport properties

Yun Zhang¹, Stephen Johnson², Joey Stieha², Manasi Chaubal², Ganesh Venugopal², Andrew T. Hunt², Justin Schwartz¹

¹Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695-7907

²nGimat, LLc, 2436 Over Dr, Lexington, KY, 40511

Bi2212/Ag wire before partial-melt processing

Bi2212/Ag Wire after partial-melt processing

TATE ERSITY

Dense and connected Bi2212 grains -Capable of carrying high currents

Interfilamentary bridges

Porosity

Non-superconducting Secondary phases

Challenges on Bi2212 precursors

Stoichiometry

Melting behavior

Chemical homogeneity

Grain size

Carbon content

Agglomeration (type, size)

Other trace elements content

Tap density

Secondary phases distribution (size, content, type)

Porosity

Wire fabrication

Grain alignment/ texture

Large-scale production

Technical Approach

NanoSpray Combustion[™] (nGimat,LLc)

+

Solid-state calcination

Starting materials: Nanosize oxides via NanoSpray CombustionTM

Average surface areas range from 9-14 m²/g; Particle size: 67-104 nm

Multiple oxides

HAADF-STEM/EDS to reveal nm-scale chemical homogeneity

Mass transport diffusion length on 10s of nm scale →ensure homogeneous and synergetic reaction to form Bi2212;

Powder calcination: phase transformation from nano-oxides to Bi2212

Bi2212 precursor powder after full 72-hrs calcination

Soft agglomerations of Bi2212 single grains Grain size: 3-8 micron;

Carbon dioxide release during full 72-hrs calcination

High surface area of starting nanosize oxides

- →CO₂ release starts at very low temperature, 300°C lower than conventional method;
- →CO₂ release completes before reaching calcination temperature;
- →<100 ppm carbon content in the final Bi2212 precursor;

Relationships between Bi2212 precursor properties and wire transport properties

Three precursor batches and wires Bi2212/Ag/Ag-0.1wt%Al

Stoichiometry

 $Bi_{2.26}Sr_{1.90}Ca_{0.90}Cu_{1.98}$

 $Bi_{2.15}Sr_{1.89}Ca_{0.93}Cu_{1.95}$

 $Bi_{2.26}Sr_{1.89}Ca_{0.86}Cu_{1.99}$

Wire configuration

LXA127A, 0.81 mm, FF=15%, 37 x 7

LXA127B, 0.81 mm, FF=15%, 37 x 7

LXA147, 0.81 mm, FF=12%, 91 x 7

Transport J_c (4.2 K, 5 T) vs PMP peak temperature (1 bar processing)

Phase and carbon content of three precursor batches

cience and Engineering

Minor impurity phases in precursor -Image analysis on pellets by SEM/EDS

Only minor impurity: (Ca,Sr)₂CuO_x(AEC)

AEC Vol% significantly lower than previous studies; AEC size < filament size;

Characteristic	LXA127A	LXA127B	LXA147
AEC vol%	0.29	0.03	0.86
AEC particle size (μm)	2-11	3-5	4-9

Melting behaviors of three green wires

NC STATE UNIVERSITY

Precursor powder Stoichiometry Std%: Composition variation

0.42 mol%

2.94 mol%

1.51 mol%

Shallow and wide melting peak→ high composition variation→ more phase segregations→bad wire performance

Summary

- A novel method combining NanoSpray CombustionTM and solid-state calcination is used to synthesize Bi2212 oxide precursor.
- >99.1 vol% of Bi2212 single crystals with <0.5 mol% composition variation are synthesized.
- Small particle size, high surface area and short diffusion length of the starting materials → rapid and homogeneous phase transformation to Bi2212 + an early and rapid carbon release.
- Carbon content < 60 ppm is required.
- Precursor with Bi_{2.26}Sr_{1.89}Ca_{0.86}Cu_{1.99} (LXA147) and 1.51 mol% composition variation →State-of-art wire transport current density: 2520 A/mm² (4.2 K, 5 T, 1 bar) and 3960 A/mm² (4.2 K, 5 T, 50 bar)

- This study is funded through DOE-STTR (DE-SC0009705).
- The authors are grateful to Leszek Motowidlo and Supramagnetics Inc for manufacturing the multifilamentary wires for this study.
- The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.
- The authors also want to thank Jenna Pilato and Kyle Malone for assistance with this study.

YUN ZHANG

THANK YOU!

