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Introduction

DEAP project

• Distributed Electrical Aerospace Propulsion part-funded by UK Technology Strategy Board

• 2-year project: March 2013 – March 2015

• Research area is in distributed propulsion, boundary layer ingestion and the enabling electrical 

system with superconducting machines and power distribution
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Introduction

Context in aircraft

• Need for disruptive aircraft configurations to improve fuel efficiency in the future

• Distributed propulsion is one possible way of producing thrust more efficiently, e.g. by enabling 

boundary layer ingestion (BLI)

• BLI re-accelerates the slow boundary layer at the fuselage in order to reduce drag

• Example aircraft electrical system power levels:

30 June 2015

Cryogenic system options for a superconducting distributed propulsion aircraft

4

Source: boeing.mediaroom.com

Conventional twin-aisle: ~300 kW More-electric aircraft: ~1 MW Future hybrid/all-electric aircraft: 5 – 100 MW



Superconducting aircraft propulsion system
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Electrical system

• 2 generators, 8 motors

• Superconducting machines

• Superconducting AC transmission

• Cryogenic power electronics (~100 K)

• Contiguous cryostat

• 50% electrical thrust

Aircraft propulsion

• 2 turbofans under wings

• 8 ducted fans around rear fuselage

N.B.: This is for illustrative purposes only and 

does indicate intended future products



• Still a subject of ongoing research!

• Aerodynamic/propulsion efficiency benefits in literature: 10-20% fuel burn savings

• Conversion and transmission system efficiency must be better than 90%

• Superconducting system may need to be better than 95% efficient to be attractive

• ~3% of electrical power available for cryogenics

• Aircraft Maximum Take-Off Weight (MTOW) sizes major components (landing gear, wings, high-lift devices)

• Reduced fuel requirements can offset additional system mass

• Operating weight empty (OWE) should aim for less than 10%  increase

• Cryogenics maximally 2/3 of electrical system mass

System-level targets
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Fuel+Payload
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Fuel+Payload
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Main cooling system philosophies:

Fully decentralised: Each machine or subsystem has a 

closed cooling loop with a cryocooler.

Partly centralised: Central coolers provide medium-

temperature circuit and local cryocoolers provide final cooling

Fully centralised: large cryocoolers maintain a closed loop of 

cold fluid at the superconducting operating temperature. 

Reverse-Brayton cycle most likely (scalability, reliability)

Cryogenic system options

Main architectures, operating temperature
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Reverse-Brayton cryocooler survey [1]

[1] Palmer et al. “Modelling of Cryogenic Cooling System Design Concepts for 

Superconducting Aircraft Propulsion”, IET Journal, Submitted for publication 2015

Operating temperature

• Materials carry higher current with lower temperature

• Temperatures below 50 K likely to be needed for light 

machines using YBCO/BSCCO

• MgB2 is promising for making windings and 

suppressing AC losses. Temperatures below 30 K 

needed

• 20-30 K target temperature is current assumption

Aircraft cryocoolers



eta_fc 0.1 0.2 0.3 0.4 0.5

T_c (K) Power demand (% of system power)

60 5.5% 2.8% 1.8% 1.4% 1.1%

50 7.0% 3.5% 2.3% 1.8% 1.4%

40 9.3% 4.6% 3.1% 2.3% 1.9%

30 13.0% 6.5% 4.3% 3.3% 2.6%

20 20.5% 10.3% 6.8% 5.1% 4.1%

15 28.0% 14.0% 9.3% 7.0% 5.6%

Cryogenic system options

Heat sinks
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eta_fc 0.1 0.2 0.3 0.4 0.5

T_c (K) Power demand (% of system power)

60 1.7% 0.9% 0.6% 0.4% 0.3%

50 2.4% 1.2% 0.8% 0.6% 0.5%

40 3.6% 1.8% 1.2% 0.9% 0.7%

30 5.4% 2.7% 1.8% 1.4% 1.1%

20 9.1% 4.6% 3.0% 2.3% 1.8%

15 12.8% 6.4% 4.3% 3.2% 2.6%

eta_fc 0.1 0.2 0.3 0.4 0.5

T_c (K) Power demand (% of system power)

60 8.0% 4.0% 2.7% 2.0% 1.6%

50 10.0% 5.0% 3.3% 2.5% 2.0%

40 13.0% 6.5% 4.3% 3.3% 2.6%

30 18.0% 9.0% 6.0% 4.5% 3.6%

20 28.0% 14.0% 9.3% 7.0% 5.6%

15 38.0% 19.0% 12.7% 9.5% 7.6%

TH = 300 K

TH = 225 K (32,000 ft.)

TH = 111 K (LCH4)

• Independent aircraft operation required up to ~350 K

• Cryocoolers less efficient -> heavier with higher ΔT

• Drag and icing a possible issue with air heat exchange

Main heat sink contenders: 

Liquid methane/LNG and liquid hydrogen

• Useful temperatures

• High latent heat

• Good potential as fuels to displace kerosene

LCH4:

• Engine alterations small for LCH4/LNG combustion

• LCH4 combustion is clean and efficient

LH2:

• LH2 more expensive, harder to handle, high volume

• but... Lower temperature, higher energy per kg

• Less simple to combust (may need separate fuel 

cell/engine)



• LCH4 coolant

• Two-stage RB cryocooler

• Intercooling in ‘parallel’ 

configuration

• LCH4 coolant

• Two-stage RB cryocooler

• LH2 coolant

• Single-stage RB cryocooler

Sensitivity analysis

Systems under investigation
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• Helium gas closed loops 

throughout



Sensitivity analysis

Variables
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Parameter Units Values

Machine inefficiency at cold temperatures % 0.03, 0.05, 0.07, 0.1, 0.2

Compressor polytropic efficiency (Turbine +3%) % 84, 87, 90, 92, 95

Heat exchanger pressure drop % 10, 7, 5, 3, 2

Heat sink tank gravimetric efficiency
LH2 % 20, 30, 40, 50, 60

LCH4 % 50, 60, 70, 80, 90

Heat exchanger minimum hot to cold side temp. differential K 5, 10, 15

Maximum component operating temperature K 20, 25, 30

Cryocooler total power density kg/kW 5, 4, 3, 2, 1

Motor power density kW/kg 5, 10, 15

• Algebraic/Static models developed for three cryocoolers

• Models are subject to the main parameter assumptions below

• Nominal values in bold

• Range of possible outcomes considered in sensitivity study

• 5-hour cruise +10% safety margin assumed for coolant requirements

• Losses at cold temperature determined by machine electrical inefficiency only



Sensitivity results: 2-stage with LCH4
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2-stage/LCH4 with nominal values

Mass Power

5.3% of MTOW

9.9% of OEW

5.5% of system 

power



Sensitivity results: 2-stage with intercooling
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2-stage/LCH4 + intercooling

Mass Power

5.5% of MTOW

10.3% of OEW

4.2% of system 

power



Sensitivity results: 1-stage with LH2
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1-stage/LH2 with nominal values

Mass Power

1.6% of MTOW

3.0% of OEW

0.1% of system 

power



Sensitivity results: 2-stage with LCH4
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Sensitivity results: 2-stage with intercooling
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Sensitivity results: 1-stage with LH2
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• Values and ‘acceptability’ are relevant to the example system – other aircraft may vary

• Results are subject to simplification and hence only guides to further research

• Most sensitive parameters:

• Compression/expansion polytropic efficiencies

• Operating temperature

• Cryogen tank gravimetric efficiency

• Superconducting machine inefficiency

• LCH4 solutions need technology better than nominal values

• LH2 solution may be required if technology is below nominal values but is limited by volume, 

infrastructure, handling, expense

• Intercooled option requires less power, but system is very sensitive to LCH4 use and is thus 

heavier

Outcomes
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• Centralised cooling system preferred

• Reverse-Brayton coolers considered best choice

• LCH4 or LH2 heat sink likely to be required

• Target temperatures currently 20-30 K

• Stringent technology targets required to find acceptable solutions

• Research is needed on all aspects of the superconducting and cryogenic systems

• Further work is required on the aircraft applications to this technology

• Functional solution can only be found by close working relationship between the airframer and 

the superconductivity and cryogenics communities

Conclusions
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Research baselines subject 

to change and discussion



Thank you
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