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Background Cryogenic System and HTS Magnet

Problem:
Radio blackout during hypersonic or reentry flight of space
vehicles. Dense plasma layers lead to attenuation or reflection of
radio waves  interruption of communication with ground
stations or satellites.

Solution:
Reduction of plasma density by magneto hydrodynamic effects
caused by crossed electric and magnetic fields.
Placement of transmitter and antenna in regions with lower
plasma density.

Project COMBIT:
Ground experiment to demonstrate local reduction of plasma
density with crossed electric and magnetic fields.

Partners: DLR, KIT, IOFFE Institute
Role of KIT: Design and construction of superconducting

magnet and cryogenic system

Courtesy of A. Gülhan, DLR
Cologne, Joint Research
Proposal Helmholtz Russia
Joint Research Group

Magnet and cryostat design
Experimental situation in L2K
plasma chamber limits size of
cryostat and magnet!

• Cryostat in vacuum chamber
• Temperatures up to ~ 450 K in

plasma beam
• Maximum diameter of cryostat: 

~100 mm around magnet

Parameters of the COMBIT HTS magnet

• Coated Conductor: SCS4050-AP
• Number of double pancakes 5
• Outer winding diameter 70 mm
• Inner winding diameter 25 mm
• Length of winding pack 49 mm
• Turns per pancake ~ 186
• Conductor length per double pancake ~ 55 m
• Self-inductance L [mH] 73 mH
• Coil constant (central field) B/I 34.08 mT/A

Transmission Spectra 
Measurements:
• 325 mbar and 375 mbar 

states 
• Magnetic fields up to 2 T 
• Voltages up to 200 V 
• LHCP and RHCP 

View on FPM containing the HTS magnet 
during plasma experiment @ DLR.

• Ion densities calculated for various E and B fields.
• Small influence of magnetic field on electron density. 
• No influence of electric field on electron density.

• Successful operation of HTS magnet in plasma experiments.
• No influence of plasma on magnet voltages and temperatures.
• Improved thermal properties after repair of current lead.

Conclusions: Blackout MitigationConclusions: Magnet Operation

Transmission spectra: signal attenuation – B dependence

Calculated ion density – B = 0.5 T

Calculated ion 
density distribution 
at B = 0.5T at 
different distances z 
from the surface of 
the FPM.

Magnetic field 
amplitude at 
certain distances 
(in axial direction) 
away from winding 
end.

Distance  from 
winding end
• to surface of 

cryostat: 7 mm
• to surface of 

FPM: 8 mm

ni (m-3)

Experimental Setup
with HTS magnet
and cryogenic
system installed in
the L2K arc heated
wind tunnel @ DLR.

Flat Plate Model (FPM)

Anode
(grounded)L2K nozzle exit

Receiving antenna

Kathode

HTS magnet

Transmitter
antenna

HTS magnet consisting of 5 CC
double pancake coils after wax
impregnation and before installation
in cryostat.

Magnetic Field outside Coil @ I = 144 A:
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Magnetic Field in Coil Winding @ I = 144 A:
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Magnet Temperatures

Quench of Current Lead (CL)

• CL2 quenched in 
experiment @ I = 144 A

• CL repaired and thermal 
anchoring improved

• CL warm end 
temperatures decreased 
by 14 K and 20 K for CL1 
and CL2, respectively
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Magnet Voltages and Temperatures
Currents up to 144 A applied B = 2 T outside FPM

• No influence of plasma on magnet voltages and temperatures
observed

• Central field @ I = 144 A: Bcentral = 4.9 T
• Max. field at winding @ I = 144 A: Bmax, Wdg = 5.16 T

Magnet voltage and current
during field ramp to B = 2 T
and during plasma
experiments at this field
amplitude.

Magnet temperatures and
current during field ramp to B =
2 T and during plasma
experiments at this field
amplitude.

Field amplitude B Perpendicular field B⊥


