

superior performance. powerful technology.

Irreversible Tensile Stress of 2G HTS Wires made by IBAD-MOCVD on Hastelloy Substrates

Yifei Zhang, Drew Hazelton, and Hisaki Sakamoto

- CEC-ICMC 2015
- June 28 July 2, 2015
- Tucson, AZ, USA

Outline

- 2G HTS wire production at SuperPower
- Mechanical and electromechanical (MEM) testing at SuperPower
- Measurements done in this work
- Stress-strain relationships at 77K under uniaxial tension
- Critical stress/strain and irreversible stress/strain at 77K under uniaxial tension
- Effects of Cu stabilizer thickness on MEM properties
- Summary

2G HTS wire production at SuperPower

REBCO wire produced by IBAD-MOCVD on Hastelloy substrate

- REBCO formulation:
 - AP (Advanced Pinning) with enhanced in-field performance for B//c, targeting at coil applications such as high-field magnets, SMES, motors/generators
 - CF (Cable Formulation) for cables, transformers, resistive type SFCL
- $I_c(77K, s.f.)/12mm=300-600A$, piece length=300-500m
- Variations in width (2-12mm), substrate thickness (30, 50 or 100μm),
 Ag thickness (1-5μm), total Cu thickness (10-115μm), and insulation
- Product lineup is expanding

Mechanical and Electromechanical (MEM) testing at SuperPower

- System built on a Shimadzu universal tester (switching between different testing modes)
- Electromechanical testing (I_c measurement under loading) at 77K in LN2
- Serves for QC and R&D

Uniaxial tension

Torsion + axial tension

Transverse tension

Transverse compression

Measuring effects of tensile stress (strain) on critical current

- I_c(0) original critical current of as-received wire
- I_c critical current measured while a wire is under a stress (strain)
- I_c' critical current measured after a stress (strain) is completely released

Defining critical stress (strain) and irreversible stress (strain)

- $\sigma_{c,0.95}$ and $\epsilon_{c,0.95}$ are stress and strain at which $I_c=0.95I_c(0)$
- $\sigma_{irr,0.99}$ and $\varepsilon_{irr,0.99}$ are stress and strain after which $I_c'=0.99I_c(0)$

K. Osamura, CCA 2014, presentation ST_IS_004

Measurements done in this work

Materials and temperature & field

- 2G HTS wires on 50μm thick Hastelloy substrate and with variation in stabilizer thickness (total Cu thickness = 0, 20, 40, or 100μm)
- At 77K in liquid nitrogen, self-field

Behaviors and properties

- Stress-strain relationship and the mechanical properties
 - Yield stress ($\sigma_{0.2}$, $\sigma_{0.1}$)
 - Elastic modulus (E_{0.45})
- Critical current (77K, self-field) measured under uniaxial stress of different levels and the critical stress (strain)
 - $I_c/I_c(0) \sim \sigma$ and $I_c/I_c(0) \sim \epsilon$
 - $\sigma_{\text{c},0.95}$ and $\epsilon_{\text{c},0.95}$
- Critical current (77K, self-field) measured after release of uniaxial stress of different levels and the irreversible stress (strain)
 - $I_c'/I_c(0) \sim \sigma$ and $I_c'/I_c(0) \sim \epsilon$
 - $\sigma_{\text{irr,0.99}}$ and $\varepsilon_{\text{irr,0.99}}$

Stress-strain relationship at 77K in LN2

Under static monotonic uniaxial loading

All on 50µm thick Hastelloy substrate with variation in total Cu stabilizer thickness

Stress-strain relationship at 77K in LN2

Through loading-unloading with progressively higher load level

SCS12050 wire with total 40µm thick Cu stabilizer

 $I_c/I_c(0)$ vs. stress, and $\sigma_{c,0.95}$ (critical stress)

$I_c/I_c(0)$ vs. strain, and $\varepsilon_{c.0.95}$ (critical strain)

 $I_c'/I_c(0)$ vs. stress, and $\sigma_{irr,0.99}$ (irreversible stress)

 $I_c'/I_c(0)$ vs. strain, and $\varepsilon_{irr,0.99}$ (irreversible strain)

Effect of Cu stabilizer thickness on MEM properties

Constant $\epsilon_{irr,0.99}$ and $\epsilon_{c,0.95}$, independent of Cu thickness

$\sigma_{c.0.95}$ and $\sigma_{irr,0.99}$ on stress-strain curves

All on 50µm thick Hastelloy substrate with variation in total Cu thickness

Relationship between $\sigma_{c,0.95}$, $\sigma_{irr,0.99}$ and $E_{0.45}$

All on 50µm thick Hastelloy substrate with variation in total Cu thickness

$I_c(x)$ on tensile tested samples

- I_c along length measured for tensile tested samples using TapeStar
- REBCO surfaces of tested samples inspected by SEM

SEM image of REBCO surface 0.75% strain

No micro cracks were found on REBCO surface for samples been up to around $\varepsilon_{irr,0.99}$

Summary

- Testing capabilities have been established at SuperPower to measure and study the mechanical and electromechanical (MEM) properties of 2G HTS wires under various types of loads
 - Uniaxial tension
 - Torsion + axial tension
 - Transverse tension
 - Transverse compression
- The effects of Cu stabilizer thickness, or the Cu/(Cu+Sub) ratio on the MEM properties of 2G HTS wires under uniaxial tension were studied at 77K
 - Elastic modulus and yield stress decrease with increasing Cu thickness
 - Critical stress ($\sigma_{c,0.95}$) and irreversible stress ($\sigma_{irr,0.99}$) decrease with increasing Cu thickness, depend linearly on elastic modulus $E_{0.45}$
 - Critical strain ($\epsilon_{c,0.95}$) and irreversible strain ($\epsilon_{irr,0.99}$) are independent of Cu thickness, showing intrinsic values at 0.45% and 0.72%, respectively