

Wrocław University of Technology

Safety related issues of the unexpected Argon release into the tunnel

Maciej Chorowski, Ziemowit Malecha, Jarosław Poliński

Motivation - LAGUNA-LBNO

Large Apparatus studying Grand Unification and Neutrino Astrophysics and Long Baseline Neutrino Oscillations

- next-generation neutrino observatory
- a huge amount of liquid Argon (LAr) transported in cryogenic-tank trucks
- cistern capacity: 20 m3 (27.6 tons)
- the first Pilot installation:3800 tons of LAr
- GLACIER 150000 tons of LAr
- 10.5 km decline, irregular spiral shape, slope of 7.3°

Work done:

- risk analysis of the LAr transportation
- identification of the worse case scenario
- effects of an uncontrolled LAr leak to the tunnel

Acknowledgments:

- European Union's Seventh Framework Program grant agreement no 284518 [LAGUNA-LBNO]
- financial resources for science 2015,
 Polish Ministry of Science

Outline

- 1. Calculation of the LAr mass flow through the rupture hole
- 2. Calculations of the substitute gas Argon (GAr) area (needed for proposed numerical model)
- 3. Mathematical model and numerical implementation (GAr propagation in the tunnel)
- 4. Results of the numerical calculations:

 GAr cloud propagation for different ventilation regime

LAr mass flow through the rupture hole

In 90% of tank rupture: $d \le 50$ mm (Risk Assessment Data Directory, 2010)

$$q_m = C \cdot A\sqrt{2 \cdot \rho_{LAr} \cdot (p_1 - p_2)}$$

 p_1 -- pressure in the tank (2MPa), p_2 -- pressure after the constriction (atmospheric) ρ_{LAr} -- density of LAr

A -- cross section of the rupture, A = 0.007854 m2

C -- dimensionless flow coefficient, C = 0.6 (Van den Bosch et al., 1997)

The worse case scenario:

- d = 50 mm
- $q_m = 4.7 \text{ kg/s} \text{ (max value)}$

Calculation of the substitute GAr area

Goal:

To create BC for the numerical model of the GAr cloud propagation

Assumptions:

 Temperature of the tunnel ground remains constant: 300 K (estimated heat flux from the ground to the LAr: 40 kW/m₂)

Conclusions:

- To evaporate $q_m = 4.7$ kg/s, the evaporation area $A_{ev} = 20$ m² is necessary
- LAr will stay in the liquid form only locally

Simplifications of the numerical model:

- LAr evaporation process can be considered to be a local event
- The evaporation process can be neglected
- LAr inlet BC can be substitute with GAr inlet BC

Mathematical model and implementation

Compressible flow of the gas mixture: air (79%N₂ + 21%O₂) and Argon

The mixing process: the diffusion-advection equation for each gas

$$\frac{\partial \rho Y_i}{\partial t} + \nabla \cdot (\rho u Y_i) = \nabla (\mu \nabla Y_i) \qquad \sum Y_i = 1$$

Momentum transportation: Navier-Stokes equations

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot (\mu \nabla \mathbf{u}) + \rho g \qquad \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Mixture: additivity

$$ho = \sum Y_i
ho_i$$
 $\mu = \sum Y_i \mu_i$ $Cp = \sum Y_i Cp_i$ ho_i , (T) $Cp_i(T)$ – polynomial functions of T $\mu_i(T)$ – Sutherland approximation

Energy transportation: enthalpy equation

$$\left| \frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} h) \right| = \frac{Dp}{Dt} + \nabla \cdot \left(\frac{k}{Cp} \nabla h \right)$$

Numerical implementation: OpenFOAM CFD toolbox, FVM, PISO algorithm

Numerical model: the geometry

- x = 0 middle of the spill area
- The inlet of GAr: $-2 \le x \le 2$, $q_m = 4.7$ kg/s, T = 87 K
- Ventilation from right to left $|U_{air}| = (1, 2.5, 5, 6)$ m/s
- Measuring points:
 - + and $\mathbf{x} 1.75$ m and 0.5 m above the ground $\mathbf{x} = (0, \pm 10, \pm 50, \pm 100, \pm 150, \pm 195)$ m

Results of the numerical calculations

Table Average velocity and direction of GAr propagation for different ventilation regimes.

Ventilation speed	U_{av} up the tunnel	U_{av} up the tunnel	direction
1	0	3.7	down the tunnel
2.5	0	2.7	down the tunnel
5	4	1.7	up & down
6	5	0	up the tunnel

Figure. Oxygen content in the measuring points, as a function of time, $U_{air} = 5$ m/s. Upper (lower) row shows results in locations 0.5 m (1.75 m) above the ground. Left (right) column shows results up (down) the tunnel from the Argon spill point.

Figure. Temperature in the measuring points, as a function of time, $U_{air} = 5$ m/s. Upper (lower) row shows results in locations 0.5 m (1.75 m) above the ground. Left (right) column shows results up (down) the tunnel from the Argon spill point.

Limiting case: All the GAr goes up the tunnel

outlet from the tunnel Time: O₂ never below 18% For y = 1.75 mmiddle of the tunnel O_2 <14% for longer time for y = 0.5 m at x = 0 m inlet to the tunnel $= U_{air} = 6 \text{ m/s}$ O2 [%]; Ventilation air 6 [m/s] 21 18 22 22 21 20 20 18 엉 16 엉 19 x=50, y=0.514 18 x=-100, y=0.5x=100, y=0.517 x=-150, y=0.512 x=150, y=0.5-x=-195, y=0.5→ x=195, y=0.5 100 16 50 100 150 100 150 50

time, s

time, s

Conclusions

- Accident of the Argon spill inside the Pyhasalmi mine tunnel was investigated.
- GAr cloud tends to flow down the tunnel for low and moderate ventilation,1-3 m/s Low temperature and O₂ deficiency hazard only at the ground level of the tunnel.
- For air ventilation larger than 5 m/s, the GAr stays in the vicinity of the incident or go slowly up the tunnel. In this case, the temperature and the O₂ deficiency can drop in regions significantly above the ground of the tunnel.
- In case of Argon spill incident: ventilation should be reduced to the lowest possible speed (max 2.5 m/s), personnel should be evacuated upwards from the incident location
- Open Source OpenFOAM numerical toolbox is suitable for cryogenics flows analysis.