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Plan of the talk

• Entanglement entropy and n-partite information

• Holographic description

• Scaling behaviors during a time evolution
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Entanglement entropy

Consider a generic quantum system with a Hilbert space H. For a pure

state |ψ〉 in the system which evolves in time by its Hamiltonian H the

density matrix is given by

ρtotal = |ψ〉〈ψ|.

Physical quantities are computed as expectation values of operators as fol-

lows

〈O〉 = 〈ψ|O|ψ〉 = Tr(ρtotalO)

In mixed states, the system is described by a density matrix ρ. An example

of a mixed state is the canonical distribution

ρ =
e−βH

Tr(e−βH)
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Assume that the quantum system has multiple degrees of freedom and so

one can decompose the total system into two subsystems A and B

A

B

H = HA ⊗HB
The reduced density matrix of the subsystem A

ρA = TrB(ρtotal)

Then the entanglement entropy is defined as the von Neumann entropy for

A

SA = −Tr(ρA ln ρA)
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Properties of Entanglement entropy

A
B

A

1. For pure state

SA = AB

2. For two subspace A and B, the strong subadditivity is

SA + SB ≥ SA∪B + SA∩B
3. Leading divergence term is proportional to the area of the boundary ∂A

SA = c0
Area

εd−1
+O(ε−(d−2)), SA =

c

3
ln
`

ε
for 2D

where c0 is a numerical constant; ε is the ultra-violet(UV) cut off in quantum
field theories.
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Rényi entropies

It is also useful to compute Rényi entropies

Sn =
1

1− n
log Trρn

Then the entanglement entropy is given by

SE = lim
n→1

Sn

Practically one may first compute Tr(ρn) by making use the replica trick and

then

SE = −∂nTrρn|n=1
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Mutual information

One may study entanglement entropy for two disjoint regions. For two

disjoint regions A and B, it is more natural to compute the amount of

correlations (both classical and quantum) between these two regions which

is given by the mutual information.

It is actually a quantity which measures the amount of information that A

and B can share which in terms of the entanglement entropy is given by

I(A,B) = S(A) + S(B)− S(A ∪B),

Although the entanglement entropy is UV divergent, the mutual informa-

tion is finite. Moreover by making use of the subadditivity property of the

entanglement entropy, it is evident that the mutual information is always

non-negative and it is zero for two uncorrelated systems.
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n-partite information

More generally one may want to compute entanglement entropy for a sub-

system consists of n disjoint regions Ai, i = 1, · · · , n.

Following the notion of mutual information for a system of two disjoint re-

gions, it is natural to define a quantity, n-partite information, which could

measure the amount of information or correlations (both classical and quan-

tum) between them. Intuitively, one would expect that for n un-correlated

systems the n-partite information must be zero. Moreover, for n discon-

nected systems it should be finite.
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Actually for a given n disjoint regions, there is no a unique way to define

n-partite information and indeed, it can be defined in different ways. In

particular in terms of entanglement entropy one may define the n-partite

information as follows

I[n](A{i}) =
n∑
i=1

S(Ai)−
n∑
i<j

S(Ai ∪Aj) +
n∑

i<j<k

S(Ai ∪Aj ∪Ak)− · · · · · ·

−(−1)nS(A1 ∪A2 ∪ · · · ∪An),

In terms of the mutual information, this n-partite information may be recast

into the following form

I[n](A{i}) =
n∑
i=2

I[2](A1, Ai)−
n∑

i=2<j

I[2](A1, Ai ∪Aj)

+
n∑

i=2<j<k

I[2](A1, Ai ∪Aj ∪Ak)− · · ·

+(−1)nI[2](A1, A2 ∪A2 · · · ∪An).

It is worth mentioning that although the mutual information is always non-

negative, the n-partite information I[n] could have either signs.
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It may be reexpressed in terms of (n− 1)-partite information as follows

I[n](A{i}) = I[n−1](A{1,··· ,n−2}, An−1) + I[n−1](A{1,··· ,n−2}, An)

−I[n−1](A{1,··· ,n−2}, An−1 ∪An).

n-partite information I[n] may be thought of a quantity which measures the

degree of extensivity of the (n− 1)-partite information.
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In the literature of information theory for a subsystem consisting of n disjoint

regions, one may define another quantity which, indeed, is a direct general-

ization of mutual information known as multi-partite entanglement defined

as follows

J [n](A{i}) =
n∑
i

S(Ai)− S(A1 ∪A2 ∪ · · · ∪An),

In terms of the mutual information it may be recast into the following form

J [n](A{i}) = I[2](A1, A2) + I[2](A1 ∪A2, A3) + · · ·+ I[2](A1 ∪A2 · · · ∪An−1, An).

Note that this quantity is finite for a system with n disjoint regions and is

zero for n un-correlated regions. It is always non-negative.
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In general, for a generic quantum system it is difficult to compute enat-

nglemenet entropy and n partite information. We note, however, that for

those strongly coupled systems which have gravitational duals, in order to

compute the entanglement entropy one may employ its holographic descrip-

tion.
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Holographic Formula for Entanglement Entropy

For static background and fixed time divide the boundary into A and B.

Extend this division A∪B to the bulk spacetime. Extend ∂A to a surface γA
in the entire spacetime such that ∂γA = ∂A.

SA =
Area(γA)

4G(d+2)
N

∣∣∣∣∣
min

S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy

from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001].
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Static solutions

Let’s compute the holographic entanglement entropy for a strip in a static

asymptotically AdS geometry.

dS2 =
L2

r2

(
−f(r)dt2 + g(r)dr2 + dx2

1 + dx2
d−2

)
,

For black hole solution

f(r) = g(r)−1 = 1−mrd = 1−
rd

rdH
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Consider an entangling region in the shape of a strip with the width of `

given by

−
`

2
≤ x1 ≤

`

2
, 0 ≤ xi ≤ L, i = 2, · · · , d− 2.

The holographic entanglement entropy may be computed by minimizing a

codimension two hypersurface in the bulk geometry whose intersection with

the boundary coincides with the above strip.
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Assuming that the profile of the hypersurface in the bulk is parameterized

by x1 = x(r), the corresponding induced metric is

dS2
ind =

R2

r2

[ (
g(r) + x′2

)
dr2 + d~x2

]
.

Therefore the area A reads

A = Ld−2Rd−1
∫
dr

√
g + x′2

rd−1
,

`

2
=
∫ rt

0
dr

√
g(r)

(
r
rt

)d−1√
1−

(
r
rt

)2(d−1)
, S =

Ld−2Rd−1

2GN

∫ rt
ε

√
g(r)dr

rd−1

√
1−

(
r
rt

)2(d−1)

where rt is a turning point and ε is a UV cut-off.
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For the vaccum state where f(r) = g(r) = 1 (AdS solution) one gets

S =



Ld−2Rd−1

2G

(
− 1

(d−1)εd−2 + c0
`d−2

)
for d 6= 2,

R
2G ln `

ε = c
3 ln `

ε, for d = 2,

with c0 being a numerical factor

c0 =
2d−2π

d−1
2

d− 2

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)

d−1
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When f 6= 1, in general, it is not possible to find an explicit expression for

the entanglement entropy, though in certain limits one may extract a general

behavior of the entanglement entropy.

In particular in the limit of mld � 1, one finds

∆A =
Ld−2

2

∫
dρ δf


√
f−1 + x′2

ρd−1

 ∣∣∣∣∣
f=1

∆f,

which leads to the following expression for the entanglement entropy

SBH = Svac +
Ld−2

4GN
c1m`

2,

where Svac is the entanglement entropy of the vacuum solution, and

c1 =
1

16(d+ 1)
√
π

Γ( 1
2(d−1))2Γ( 1

d−1)

Γ( d
2(d−1))2Γ(1

2 + 1
d−1)

.
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For m`d � 1 the main contributions to the entanglement entropy comes

from the limit where the minimal surface is extended all the way to the

horizon so that ρt ∼ ρH. Setting u = ρ
ρt

one gets

`

2
≈ ρH

∫ 1

0

ud−1du√
(1− ud)

(
1− u2(d−1)

),
SBH ≈

Ld−2

4GNρ
d−2
H

∫ 1

ε
ρH

du

ud−1
√

(1− ud)
(
1− u2(d−1)

).
Note that apart from the UV divergent term in SBH, due to the double zero

in the square roots, the main contributions in the above integrals come from

u = 1 point. Indeed around u = 1 it may be recast to the following form

SBH ≈
Ld−2

4GNρ
d−2
H


∫ 1

0

ud−1du√
(1− ud)

(
1− u2(d−1)

) +
∫ 1

ε
ρH

du

√
1− u2(d−1)

ud−1
√

1− ud

 .
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Therefore one arrives at

SBH ≈
Ld−2

4GN

 1

(d− 2)εd−2
+

`

2ρd−1
H

−
c2

ρd−2
H

 .
where c2 is a positive number. For example for d = 3,4 one gets c2 =

0.88,0.33, respectively.

Note that the first finite term in the above expression is proportional to the

volume which is indeed the thermal entropy, while the second finite term is

proportional to the area of the entangling region.

W. Fischler and S. Kundu, “Strongly Coupled Gauge Theories: High and

Low Temperature Behavior of Non-local Observables,” [arXiv:1212.2643

[hep-th]].
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Time-dependent backgrounds

So far we have considered static case where we have a time slice on which

we can define minimal surfaces. In the time-dependent case there is no a

natural choice of the time-slices.

In Lorentzian geometry there is no minimal area surface. In order to resolve

this issue we use the covariant holographic entanglement entropy which is

SA(t) =
Area(γA(t))

4G(d+2)
N

where γA(t) is the extremal surface in the bulk Lorentzian spacetime with

the boundary condition ∂γA(t) = ∂A(t).

Strong subadditivity?

V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic

entanglement entropy proposal,” JHEP 0707, 062 (2007) [arXiv:0705.0016

[hep-th]].
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Example of time-dependent case: Black hole formation or Thermalization

Geometry ⇐⇒ State

AdS solution ⇐⇒ Vaccum state

Black hole ⇐⇒ Excited state; thermal

Let us perturbe a system so that the end point of the time evolution would be

a thermal state. This might be done by a global quantum quench. Typically

during evolution the system is out of equilibrium.

The thermalization process after a global quantum quench may be map to

a black hole formation due to a gravitational collapse.
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A quantum quench in the field theory may occurs due to a sudden change in

the system which might be caused by turning on the source of an operator

in an interval δt→ 0.

This change can excite the system to an excited state with non-zero energy

density that could eventually thermalize to an equilibrium state.

P. Calabrese and J. L. Cardy, “Evolution of Entanglement Entropy in One-

Dimensional Systems,” arXiv:cond-mat/0503393 [cond-mat].
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From gravity point of view this might be described by a gravitational collapse

of a thin shell of matter which can be modelled by an AdS-Vaidya metric.

dS2 =
R2

r2
[f(r, v)dv2 − 2drdv + d~x2], f(r, v) = 1−mθ(v)rd

where r is the radial coordinate, xis are spatial boundary coordinates and v

is the null coordinate. Here θ(v) is the step function and therefore for v < 0

the geometry is an AdS metric while for v > 0 it is an AdS-Schwarzschild

black hole.
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General solution with hyperscaling factor

S = −
1

16πGN

∫
dD+2x

√
−g

R− 1

2
(∂φ)2 + V (φ)−

1

4

Ng∑
i=1

eλiφF (i)2
 ,

where V (φ) = V0e
γφ, G is the Newton constant, γ, V0 and λi are free param-

eters of the model.

One of the gauge field is required to produce an anisotropy while the above

particular form of the potential is needed to get hyperscaling violating factor.

The other gauge fields make the background charged. In what follows we

will consider Ng = 2.

K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S. P. Trivedi and A. Westphal,

“Holography of Dyonic Dilaton Black Branes,” [arXiv:1007.2490 [hep-th]].
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The model admits solutions with hyperscaling violating factor

ds2 = r−2 θ
D

(
− r2zdt2 +

dr2

r2
+ r2d~x2

)
,

Under scaling

t→ ξzt, xi → ξx, r → ξ−1r

the metric scales ds→ ξθ/Dds.

S ∼ T (D−θ)/z

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, “Effec-
tive Holographic Theories for low-temperature condensed matter systems,”
[arXiv:1005.4690 [hep-th]].

X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, “Aspects of
holography for theories with hyperscaling violation,” [arXiv:1201.1905 [hep-
th]].
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It has exact charged black hole solutions as follows

ds2 = r−2 θ
D

(
− r2zf(r)dt2 +

dr2

r2f(r)
+ r2d~x2

)
, φ = β ln r,

A
(1)
t =

√
2(z − 1)

D − θ + z
rD−θ+z, A

(2)
t =

√
2(D − θ)

D − θ + z − 2

Q

rD−θ+z−2
,

with β =
√

2(D − θ)(z − 1− θ/D) and

f(r) = 1−
m

rD−θ+z
+

Q2

r2(D−θ+z−1)
.

where z is the dynamical exponent and θ is the hyperscaling violation

exponent.

M. A., E. O Colgain and H. Yavartanoo, “Charged Black Branes with Hy-

perscaling Violating Factor,” [arXiv:1209.3946 [hep-th]].
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We can also find a Vaidya metric with hyperscaling violating factor

ds2 = r−2 θ
D

(
− r2zf(r, v)dv2 + 2rz−1drdv + r2d~x2

)
, φ = β ln r,

A
(1)
v =

√
2(z − 1)

D − θ + z
rD−θ+z, A

(2)
v =

√
2(D − θ)

D − θ + z − 2

Q(v)

rD−θ+z−2
.

f(r, v) = 1−
m(v)

rD−θ+z
+

Q(v)2

r2(D−θ+z−1)
,
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The energy momentum and current density of the charged infalling matter

are given by Tµν = %UµUν and J
(2)
µ = %eUµ with Uµ = δµv, and

% =
θ −D

2

∂f(r, v)

∂v
rz, %e =

∂Q(v)

∂v

√
2(D − θ)(D − θ + z − 2) rθ−D.

Note that the null energy condition requires % > 0.

In what follows d = D − θ + 1 is the effective dimension. We will also set

Q = 0.
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Entnaglement entropy for a strip

To compute the entanglement entropy for a strip with width `, let us consider

the following strip

−
`

2
≤ x1 = x ≤

`

2
, 0 ≤ xa ≤ L, for a = 2, · · · , D.

Since the metric is not static one needs to use the covariant proposal for

the holographic entanglement entropy. Therefore the corresponding co-

dimension two hypersurface in the bulk may be parametrized by v(x) and

r(x). Then the induced metric on the hypersurface, setting r = 1
ρ, is

ds2
ind = ρ21−d

D

[(
1− ρ2−2zf(ρ, v)v′2 − 2ρ1−zv′ρ′

)
dx2 + dx2

a

)
,
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The area of the hypersurface reads

A =
LD−1

2

∫ `/2

−`/2
dx

√
1− 2ρ1−zv′ρ′ − ρ2−2zv′2f

ρd−1

We note, however, that since the action is independent of x the correspond-
ing Hamiltonian is a constant of motion

ρnL = H = constant.

Moreover we have two equations of motion for v and ρ. Indeed, by making
use of the above conservation law the corresponding equations of motion
read

∂xPv =
P2
ρ

2

∂f

∂v
, ∂xPρ =

P2
ρ

2

∂f

∂ρ
+

n

ρ2n+1
H2 +

1− z
ρ2−z PρPv,

where

Pv = ρ1−z(ρ′+ ρ1−zv′f), Pρ = ρ1−zv′,

are the momenta conjugate to v and ρ up to a factor of H−1, respectively.
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These equations have to be supplemented by the following boundary condi-

tions

ρ(
`

2
) = 0, v(

`

2
) = t, ρ′(0) = 0, v′(0) = 0,

and

ρ(0) = ρt, v(0) = vt,

where (ρt, vt) is the coordinate of the extremal hypersurface turning point in

the bulk.

In what follows we will consider the case of `� ρH
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i) v < 0 region

In this case which corresponds to the vacuum solution one has

P(i)v = ρ′+ ρ1−zv′ = 0,

which together with the conservation law yields to

v(ρ) = vt +
1

z
(ρzt − ρz), x(ρ) =

∫ ρt
ρ

dξ ξn√
ρ2n
t − ξ2n

.

Note also that at the null shell where v = 0, from the above equation, one

gets

ρzc = ρzt + zvt

which, indeed, gives the point where the extremal hypersurface intersects

the null shell. Moreover, from the conservation law in the initial phase one

finds

ρ′(i) = −ρ1−z
c v′(i) = −

√√√√(ρt
ρc

)2n

− 1
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ii) v > 0 region

In this case which the corresponding geometry is a the black hole, using the

conservation law one arrives at

ρ′2 =
P2

(f)v

ρ2−2z
+

(ρt
ρ

)2n

− 1

 f(ρ) ≡ Veff(ρ),

which can also be used to find

dv

dρ
= −

1

ρ2(1−z)f̃(ρ)

ρ1−z +
P(f)v√
Veff(ρ)

 .

Here Veff(ρ) might be thought of as an effective potential for a one di-

mensional dynamical system whose dynamical variable is ρ. In particular the

turning point of the potential can be found by setting Veff(ρ) = 0.
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iii) Matching at the null shell

Since ρ and v are the coordinates of the space time they should be continuous

across the null shell.

We note. however, that since one is injecting matters along the null direction

v, one would expect that its corresponding momentum conjugate jumps once

one moves from v < 0 region to v > 0 region.

Therefore by integrating the equations of motion across the null shell one

arrives at

ρ′(f) =
(

1−
1

2
g(ρc)

)
ρ′(i), L(f) = L(i), v′(f) = v′(i).

It is, then, easy to read the momentum conjugate of v in v > 0 region

P(f)v =
1

2
ρ1−z
c g(ρc)ρ

′
(i) = −

1

2
ρ1−z
c g(ρc)

√√√√(ρt
ρc

)2n

− 1.
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Now we have all ingredients to find the area of the corresponding extremal

hypersurface in the bulk. In general the extremal hypersurface could extend

in both v < 0 and v > 0 regions of space-time. Therefore the width ` and

the boundary time are found

`

2
=
∫ ρt
ρc

dρ ρd−1√
ρ

2(d−1)
t − ρ2(d−1)

+
∫ ρc

0

dρ√
Veff(ρ)

, t =
∫ ρc

0

ρz−1dρ

f(ρ)

1 +
ρz−1E√
Veff(ρ)

 ,
where E = P(f)v.

Finally the entanglement reads

S =
LD−2

2G

[ ∫ ρt
ρc

ρd−1
t dρ

ρd−1
√
ρ

2(d−1)
t − ρ2(d−1)

+ ρd−1
t

∫ ρc
0

dρ

ρ2(d−1)
√
Veff(ρ)

]
.
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The behavior of entanglement entropy has been numerically studied in sev-

eral papers including

J. Abajo-Arrastia, J. Aparicio and E. Lopez, “Holographic Evolution of En-

tanglement Entropy,” [arXiv:1006.4090 [hep-th]].

T. Albash and C. V. Johnson, “Evolution of Holographic Entanglement

Entropy after Thermal and Electromagnetic Quenches,” [arXiv:1008.3027

[hep-th]]

V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps,

E. Keski-Vakkuri, B. Muller and A. Schafer et al., “Thermalization of Strongly

Coupled Field Theories,” [arXiv:1012.4753 [hep-th]].

In what follows we will proceed with semi-analytic results following H. Liu

and S. J. Suh, [arXiv:1311.1200 [hep-th]].
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Early time

At the early time where t � ρH the crossing point of the hypersurfaces is

very close to the boundary, ρc
ρH
� 1. Therefore one may expand t, and A

leading to

t ≈
ρzc
z

1 +
1

d+ 1

(
ρc

ρH

)d
+

1

2d+ 1

(
ρc

ρH

)2d

+ ...

 ,
A ≈

Ld−2

(d− 2)

 1

εd−2
− c

1

ρd−2
t

+
Ld−2m

2(z + 1)
ρ1+z
c

1 +
1

2d

(
ρc

ρt

)2(d−1)

+ ...

 ,
where c =

√
π

Γ( d
2(d−1)

)

Γ( 1
2(d−1)

)
. So that at leading order one finds

S ≈ Svac +
LD−1m

4G(z + 1)
(zt)1+1

z .
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Intermediate time interval

In the intermediate time interval where ρzH � t � ρz−1
H

`
2, the entanglement

entropy growth linearly with time. Indeed, there is a critical extremal surface
which is responsible for the linear growth in this time interval.

Veff(ρ) might be thought of as an effective potential for a one dimensional
dynamical system whose dynamical variable is ρ.

For a fixed extremal hypersurface turning point in the bulk, ρt, there is a
free parameter in the effective potential given by ρc which may be tuned to
a particular value ρc = ρ∗c such that the minimum of the effective potential
becomes zero

∂Veff(ρ)

∂ρ

∣∣∣∣∣
ρm,ρ∗c

= 0, Veff(ρ)|ρm,ρ∗c = 0.

If the hypersurface intersects the null shell at the critical point it remains
fixed at ρm.
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Therefore in the intermediate time interval the main contributions to `, t

and A come from a hypersurface which is closed to the critical extremal

hypersurface.

In this case assuming ρc = ρ∗c(1 − δ) for δ � 1 in the limit of ρ → ρm and

with the conditions ρ∗c
ρt
, ρmρt
� 1 one finds

t ≈ −
ρ

2(z−1)
m E∗

f(ρm)
√

1
2V
′′
eff

log δ,
`

2
≈ cρt +

f(ρm)

E∗
t

A ≈
Ld−2

(d− 2)

 1

εd−2
− c

1

ρd−2
t

− Ld−2ρd−1
t

ρ
2(d−1)
m

√
1
2V
′′
eff

log δ

where E∗ ≡ E(ρ∗c). So that

S ≈ Svac + LD−1Sth vE ρ1−z
H t.

42



The scaling behaviours of entanglement entropy

• Early times growth where t� ρzH

∆S ≈
LD−1m

4G(z + 1)
(zt)1+1

z ,

• The intermediate region where ρz−1
H

`
2 � t� ρzH

∆S ≈ LD−1Sth vE ρ1−z
H t,

where

vE =

(
d+ z − 3

2(d+ z − 2)

)d+z−2
d+z−1

√
d+ z − 1

d+ z − 3
, Sth =

1

4Gρd−1
H

• Late time saturation t ∼ ρz−1
H

`
2

∆S ≈
LD−1`

4Gρd−1
H

= LD−1`Sth .

P. Calabrese and J. L. Cardy, “Evolution of Entanglement Entropy in One-
Dimensional Systems,” arXiv:cond-mat/0503393 [cond-mat].
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To summarize

The system has to scales: the size of enatngling region ` and the radius of

horizon ρH.

Thereore we have two time scales

t ∼ ρH local equilibrium,

t ∼
`

2
saturation on entanglement emtropy.

When ρH > `
2 the entanglement entropy saturates at t ∼ `

2 before the system

reaches a local equilibrium, whereas for ρH < `
2 the entanglement entropy is

far from its equilibrium value even though the system is locally equilibrated.
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For `
2 < ρH one has (z = 1)

Early times S ∼ Svac + Vd−1 E t2,

Saturation S ∼ Svac + Vd−1 E
`2

4
.

Here E is the energy density. Sinice the system has not reached a local

equilibrium, this is the quantity one may define.

It is consistent with the first law of entnaglement entropy

∆E = TE∆SE, TE ∼
1

`
.
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For `
2 < ρH one has

Early times S ∼ Svac + Vd−1 E t2,

Intermediate S ∼ Svac + Vd−1 Sth t,

Saturation S ∼ Svac + Vd−1 Sth
`

2
+
Vd−1

ρd−2
H

.

The intermediate region is ρH < t < `
2. So that at the early times the system

is out of equilibrium, though the system reaches a local equilbrium while the
enatnglement entropy still grows with time.

After the local equilibrium the enatnglement entropy may be given in terms
of the thermal entropy.

The entanglement entropy at the early times is sensitive to the state, while
in the intermediate region it always grows linearly.
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Holographic n-partite information

A1 A2 A3 An

` ` ` `

h h

We will study n-partite information of a subsystem consists of n disjoint
regions Ai, i = 1, · · · , n in a d-dimensional CFT for the vacuum and thermal
states whose gravity duals are provided by the AdS and AdS black brane
geometries. The n disjoint regions are given by n parallel infinite strips of
equal width ` separated by n− 1 regions of width h.

I[n](A{i}) =
n∑
i=1

S(Ai)−
n∑
i<j

S(Ai ∪Aj) +
n∑

i<j<k

S(Ai ∪Aj ∪Ak)− · · · · · ·

− (−1)nS(A1 ∪A2 ∪ · · · ∪An).
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r

xa1 b1 a2 b2

h` `

r

xa1 b1 a2 b2

h` `

The main subtlety in evaluating the above quantity is the computation of

entanglement entropy of union of subsystem.

For a given two strips with the widths ` and distance h, there are two minimal

hypersurfaces associated with the entanglement entropy S(A ∪B) and thus

the corresponding entanglement entropy behaves differently.

S(A ∪B) =


S(2`+ h) + S(h) h� `,

2S(`) h� `,
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Therefore the mutual information becomes

I(A ∪B) =


2S(`)− S(2`+ h)− S(h) h� `,

0 h� `,

The holographic mutual information undergoes a first order phase transition

as one increases the distance between two strips. Indeed, there is a critical

value of h` above which the mutual information vanishes. As we just observed,

this peculiar behavior has to do with the definition of entanglement entropy

of the union A ∪B.

M. Headrick, [arXiv:1006.0047 [hep-th]].

V. E. Hubeny and M. Rangamani, [arXiv:0711.4118 [hep-th]].

E. Tonni, [arXiv:1011.0166 [hep-th]].
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n-disjoint regions

Following the same procedure for h� ` one has

S(Ai ∪Ai+j) =

 S(2`+ h) + S(h) j = 1,
2S(`) j > 1,

.

Similarly for the union of three regions one uses

S(Ai ∪Ai+j ∪Ai+j+k) =


S(3`+ 2h) + 2S(h) j = 1, k = 1
S(2`+ h) + 2S(h) j = 1, k > 1, or j > 1, k = 1,

3S(`) j > 1, k > 1
,

and more generally for arbitrary integer numbers k,m and j > 1 one has

S(Ai ∪Ai+1 · · · ∪Ai+k ∪Ai+k+j ∪Ai+k+j+1 · · · ∪Ai+k+j+m)

= S(Ai ∪Ai+1 · · · ∪Ai+k) + S(Ai+k+j ∪ · · · ∪Ai+k+j+m)

= S(k`+ (k − 1)h) + (k − 1)S(h) + S(m`+ (m− 1)h)

+(m− 1)S(h).
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By making use of these expressions, the n partitie information for our system

may be simplified significantly as follows

I[n](A{i}) = (−1)n
[
2S

(
(n− 1)`+ (n− 2)h

)
− S

(
n`+ (n− 1)h

)

−S
(

(n− 2)`+ (n− 3)h

)]
≡ (−1)nĨ[n].

Interestingly enough, one observes that among various co-dimension two hy-

persurfaces only three of them corresponding to (n− 1)`+ (n− 2)h, n`+ (n− 1)h

and (n− 2)`+ (n− 3)h contribute to the n-partite information.
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Static solutions

n-partite information for the vacuum state of a CFT whose gravity dual is

given by an AdS background

Ĩ
[n]
vac =

Ld−2c0
4GN

(
−

2

((n− 1)`+ (n− 2)h)d−2
+

1

(n`+ (n− 1)h)d−2

+
1

((n− 2)`+ (n− 3)h)d−2

)
.

For a thermal state whose gravity dual is provided by an AdS black brane

geometry, and in the limit of `� ρH, one finds

Ĩ
[n]
BH = Ĩ

[n]
vac −

Ld−2

2GN
c1

(`+ h)2

ρdH
.

while for ρH � ` it vanishes. It is becuase

−2[(n− 1)`+ (n− 2)h] + [(n− 2)`+ (n− 3)h] + [n`+ (n− 1)h] = 0,

W. Fischler, A. Kundu and S. Kundu, “Holographic Mutual Information at

Finite Temperature,” [arXiv:1212.4764 [hep-th]].
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Time dependent behavior of mutual information and tripartite information

have been studied numerically literature. See for example

V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli,

“Thermalization of mutual and tripartite information in strongly coupled

two dimensional conformal field theories,” [arXiv:1110.0488 [hep-th]].

A. Allais and E. Tonni, “Holographic evolution of the mutual information,”

[arXiv:1110.1607 [hep-th]].

R. Callan, J. -Y. He and M. Headrick, “Strong subadditivity and the covariant

holographic entanglement entropy formula,” [arXiv:1204.2309 [hep-th]].

They have definite sign if the solution satisfies null energy condition.
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Time dependent solutions

For the system we are considering there are four time scales given by the ra-

dius of the horizon ρH and the three entangling regions: (n− 2)`+ (n− 3)h,

(n− 1)`+ (n− 2)h and n`+ (n− 1)h.

Assuming in h � `, one recognizes four possibilities for the order of these

scales as follows

2ρH � (n− 2)`+ (n− 3)h < (n− 1)`+ (n− 2)h < n`+ (n− 1)h,

(n− 2)`+ (n− 3)h < 2ρH < (n− 1)`+ (n− 2)h < n`+ (n− 1)h,

(n− 2)`+ (n− 3)h < (n− 1)`+ (n− 2)h < 2ρH < n`+ (n− 1)h,

(n− 2)`+ (n− 3)h < (n− 1)`+ (n− 2)h < n`+ (n− 1)h < 2ρH ,
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• First case:2ρH � (n− 2)`+ (n− 3)h < (n− 1)`+ (n− 2)h < n`+ (n− 1)h

At the early times one finds

Ĩ[n] = Ĩ
[n]
vac +O(t2d),

The system reaches a local equilibrium at t ∼ ρH after which it does not

produce thermal entropy, though the entanglement entropy associated with

the entangling regions appearing in the n-partite information still increasing

with time.

Ĩ[n] = Ĩ
[n]
vac +

Ld−2

4GN

 c2

ρd−2
H

−
c0

((n− 2)`+ (n− 3)h)d−2


+

Ld−2

4GNρ
d−1
H

(
vEt−

(n− 2)`+ (n− 3)h

2

)
,
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It reaches a maximum at the decreases with time

Ĩ[n] ≈ Ĩ
[n](1)
max +

Ld−2

4GN

 c0
((n− 1)`+ (n− 2)h)d−2

−
c2

ρd−2
H


+

Ld−2

4GNρ
d−1
H

(
n− 1

2
`+

n− 2

2
h−vEt

)
.

Finally it saturates at

vEts ≈
n

2
`+

n− 1

2
h−c2ρH .

To be compared with the saturation time of the entanglement entropy of a
strip with the width n`+ (n− 1)h

vEts ≈
n

2
`+

n− 1

2
h.
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I[3]

t

One should consider the factor of (−1)n in the expression.

For example for n = 3 one finds that in the case of ρH � li, the 3-partite

information starts from its value in the vacuum and remains almost constant

up to t ∼ 1
2`, then it decreases linearly with time till it reaches its minimum

value. After that it increases linearly with time till it becomes zero at the

saturation time given by ts ∼ 3
2`+ h− c2ρH.
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• Second case: (n− 2)`+ (n− 3)h < 2ρH < (n− 1)`+ (n− 2)h < n`+ (n− 1)h

I[3]

t

Ĩ[n] ≈ Ĩ[n]
vac +

Ld−2

4GNρ
d
H

(
t2

4
− c1

(
(n− 2)`+ (n− 3)h

)2
)
,

Finally it saturates at

vE ts ≈
n

2
`+

n− 1

2
h−c2ρH ,
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• Third case: (n− 2)`+ (n− 3)h < (n− 1)`+ (n− 2)h < 2ρH < n`+ (n− 1)h

I[3]

t

• Fourth case: (n− 2)`+ (n− 3)h < (n− 1)`+ (n− 2)h < n`+ (n− 1)h <
2ρH ,

I[3]

t
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Within the context of the AdS/CFT correspondence we have computed Ĩ[n];

it is always positive. In other words the holographic n-partite information

has definite sign: for even n it is positive and for odd n it is negative, though

for a generic field theory it could have either signs.

One may suspect that having definite sign for the n-partite information is,

indeed, an intrinsic property of a field theory which has gravity dual.

Although we have considered special case, the general feature remains the

same for general case.

P. Hayden, M. Headrick and A. Maloney, “Holographic Mutual Information

is Monogamous,” [arXiv:1107.2940 [hep-th]].
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