AWAKE Status Report SPSC Meeting October 21, 2014

AWAKE Collaboration

Allen Caldwell Max-Planck-Institut für Physik

AWAKE

AWAKE = Advanced proton-driven plasma WAKEfield acceleration experiment.

Phase I

- Use SPS proton bunch to drive the wake field via the selfmodulation instability. 3 10¹¹ protons/bunch at 400GeV/particle
- Plasma is laser ionized Rubidium vapor
- Study development of modulation & compare with calculations
- First proton beams in 2016

Phase II

- Inject electrons in proton-driven wake
- Study capture & acceleration process
- Parameter scans & comparison with calculations

Phase III

• Two-cell operation (modulation/acceleration) to demonstrate scalability of acceleration scheme.

Collaboration

The Collaboration is strong and growing. 16 institutes participating + several requests under consideration.

Budker Institute of Nuclear Physics & Novosibirsk State

CERN

Cockroft Institute

DESY

Heinrich Heine University, Düsseldorf

Instituto Superior Tecnico

Imperial College

Ludwig Maximilian University

Max Planck Institute for Physics

Max Planck Institute for Plasma Physics

Rutherford Appleton Laboratory

TRIUMF

University College London

University of Oslo

University of Strathclyde

Revised Organization

Created

a **Physics and Experiment Board**, chaired by **Patric Muggli (MPP)**. Defines physics goals, sets measurement strategy, formulates specifications on beams, plasma cells and related equipment and on the diagnostic devices, and defines the data analysis tools and strategies.

and

a **Technical Board**, chaired by **Edda Gschwendtner (CERN)**. Coordinates design, installation, integration and interfaces of the experiment, resource loaded planning, specifications for technical implementation & monitoring.

Task Groups & Work Packages

Task 1	Metal vapor plasma cell	Erdem Öz	MPP
Task 2	Helicon plasma cell	Olaf Grulke	IPP
Task 3	Pulsed discharge plasma cell	Nelson Lopes	IC/IST
Task 4	Optical sampling diagnostics	Roxana Tarkeshian	MPP
Task 5	Electron spectrometer	Simon Jolly	UCL
Task 6	Simulations	Konstantin Lotov	BINP
Task 7	Electron accelerating structure	Greame Burt	CI
Task 8	Data Acquisition	Peter Sherwood	UCL
Task 9	Laser system	Joshua Moody	MPP
WP	SPS Beam	Elena Shaposhnikova	CERN
WP	Proton and electron beam lines	Chiara Bracco	CERN
WP	Experimental area, integration, installation	Ans Pardons	CERN
WP	Electron injector system	Steffen Doebert	CERN
Sub-WP	Laser beam line and interface	Valentin Fedosseev	CERN
Sub-WP	Synchronisation	Andy Butterworth	CERN
Sub-WP	Radiation Protection	Helmut Vincke	CERN

Proton-Driven Wakefield Acceleration

Laser-driven and electron-bunch driven acceleration have made impressive progress. But, will require many stages to reach the TeV scale. Limitation – energy carried by driver.

If we can use protons to drive a wakefield we can have a simpler arrangement - single stage acceleration. Caveat: need very short proton bunches for strong gradients.

Size of accelerator structure set by plasma density

$$\lambda_p \approx 1 \text{ mm } \sqrt{\frac{1 \cdot 10^{15} \text{cm}^{-3}}{n_p}}$$

A. Caldwell, K. Lotov, A. Pukhov, F. Simon, *Nature Physics* **5**, 363 - 367 (2009)

Modulated Proton Bunch

Short bunches 'created' by the plasma!

AWAKE Overview

AWAKE status report

AWAKE Collaboration

Full status report available on the CERN Document Server.

Here we pick out some highlights.

- 1. New electron injection scheme
- 2. Plasma cell & Laser system status
- 3. Electron injector & beamline
- 4. Diagnostics
- 5. Experiment layout & radiation safety
- 6. Simulations
- 7. Schedule

October 2014

Electron injection scheme

Side Injection of electrons ->

on-axis injection

On-axis injection technically easier. Beam dynamics calculation - DESY

Electron injection scheme

Side Injection of electrons ->

on-axis injection

Simulations BINP, IST

On-axis injection has fewer parameters to control

Plasma Sources

1. Rubidium vapor ionized by laser for Phase 1,2. Developed at MPP.

Well within specs. 10m version under design.

Vapor density measurement developed (interferometer system):

Density 10¹⁵ cm⁻³ measured as expected

13

Online Rb density measurement demonstrated

Fast Valves

####FASTEVALVE®DESIGN®REQU	IREMENTS 2	
Opening Time	~10 ms	
Closing Time	<1 s	
Environment	Rubidium, radiation resistant	
Temperature	180 - 220 °C	
Leak Rate	1.75e-2 mbar liter/sec	
Aperture Size (D)	4 cm	
Number of Cycles	43200	

>50k cycles at 230 C; operation with Rb to be demonstrated.

Plasma Uniformity

For effective electron capture, need uniform plasma density (recall, plasma wavelength depends directly on plasma density)

Valve opening causes drop in density near ends of plasma cells:

- 1. Not critical for development of proton modulation
- 2. Not critical at exit because electrons already at high energy
- 3. Molecular flow simulations (CERN) indicate drop in density over first meter if no care taken to reduce escape of plasma.
- 4. Mitigation strategies under study; e.g., baffles
- 5. Also possible to focus electron bunch to point where plasma uniform.

Laser System

•	
Fibre Ti:Sapphire	
$\lambda_0 = 780 \mathrm{nm}$	
100–120 fs	
450 mJ	
4.5 TW	
$\sigma_{x,y} = 1 \text{ mm}$	
$\pm 1.5\%$ r.m.s.	
10 Hz	
Ti:Sapphire Centaurus	
$\lambda_0 = 260 \mathrm{nm}$	
10 ps	
$\int 50 \mu \mathrm{J}$	

Electron source cathode

Quantum efficiency Energy stability Installation complete at MPP; all specs met or exceeded.

Parameters & realization at CERN now under discussion. CERN-MPP-Amplitude

Copper 3.00×10^{-5}

 $\pm 2.5\%$ r.m.s.

Laser System in CNGS

Helicon cell

1m prototype in regular operation at IPP (Greifswald)

Proton Beam Line

Change of the proton beam line only in the downstream part (~80m)

Laser-proton merging 20m upstream the plasma cell

- → **Displace existing magnets** of the final focusing to fulfill optics requirements at plasma cell
- → Move existing dipole and 4 additional dipoles to create a chicane for the laser mirror integration.

Design complete!

Electron – Source

- In Design Report: new gun, ERC Synergy grant application (not successful)
- New Baseline:
 - Photo injector (PHIN) from CTF2 at CERN (5 MeV electrons)
 - Klystron and modulator from CTF3
 - Booster from
 Cockcroft/Lancaster 5
 MeV → 20 MeV
 - Monitoring/DiagnosticsCERN/TRIUMF
 - Beam transport CERN, CI

Electron Gun

Parameter	Baseline	Range to check	
Energy	16 MeV	10–20 MeV	
Bunch charge	0.2 nC	0.1–1 nC	
Bunch length (σ)	4 ps	0.3–10 ps	
Beam focus length (σ)	$250\mu\mathrm{m}$	0.25–1 mm	
Normalised emittance (r.m.s.)	2 mm mrad	0.5–5 mm mrad	
Energy spread (σ)	0.5%	< 0.5%	

21

Electron Beam Line

About two months ago:

Now:

Laser tunnel has been excavated recently also.

Self-Modulation-Instability Diagnostics

Measure the characteristics of the proton beam after propagating through the plasma cell.

Optical Transition Radiation

Test setup at MPP with lasers & streak camera.

Streak camera image

Initial concern – charge buildup in streak camera Success: can resolve modulated pulse up to 300 GHz

Coherent Transition Radiation

Techniques under development at MPP. Challenge – signal extraction. CST code simulations in progress.

TCTR can distinguish transverse modes (hosing vs SMI)

See A. Pukhov, T. Tueckmantel, Phys. Rev. ST-AB (2012)

Electron Spectrometer

- Measure peak energy and energy spread of electrons.
- Measure divergence of electron bunch
- Spectrometer magnet separates electrons from proton beam-line.
- Dispersed electron impact on scintillator screen.
- Resulting light collected with intensified CCD camera.

Performance study (end-to-end simulation). Energy spectrum fully

reproduced.

Open issues:

- Smaller magnet?
- Vacuum chamber design
- Location of camera

Photo

Weight	15 t	8.5 t
Power consumption	60 kW	15 kW rms & 24 kW cycled
Integrated field (B*L)	1.9 T*m	1.3 T*m rms & 1.6 T*m cycled
Max. magnetic field	1.65 T	1.2 T rms & 1.5 T cycled
Horizontal aperture	52 cm	32 cm
Vertical aperture	11 cm	8 cm
Iron length	1 m	1 m
Total length	1.7 m	1.6 m
Total width	1.2 m	1.3 m
Current	545 A	400 A rms & 500 A cycled

Background from upstream proton interactions under study.

Preparation of Experimental Area

Layout & design

electron source, klystron

electron beam line

Proton laser

merging

Laser lab layout

Currently working on: Placement of electronics,

power supplies, cabling, etc.

Vacuum design (specs, pumping, etc.) specifications under study.

Proton beam-line

Plasma cell, 10m

Radiation Studies

Extensive set of radiation studies carried out with conservative settings.

Important issue: vacuum separation window SPS beamline & AWAKE area. Impact on placement of sensitive electronics in experimental area. Further studies ongoing.

Simulations

Simulation team: BINP, Düsseldorf, IST, Oslo, UCL

Simulations

On-axis injection: animation of electron trapping and acceleration

-162

(Wakefield potential)

-163

έ (mm)

-164

Database with simulation output (particle position, momentum, time) set up & being used for diagnostic studies.

Detailed Schedule

CERN Project Managers keeping everyone on schedule!

An Example ...

Schedule

Science Program:

- 1. Benchmark experiments first ever proton-driven plasma wakefields
- 2. Detailed comparison of experimental measurements with simulations
- 3. Demonstration of high-gradient acceleration of electrons
- 4. Develop long, scalable & uniform plasma cells; test in AWAKE experiment

Goal: Design high quality & high energy electron accelerator based on acquired knowledge.