Uncertainties in predicting ttbb by PowHel

Zoltán Trócsányi

University of Debrecen and MTA-DE Particle Physics Research Group in collaboration with
A. Kardos, M.V. Garzelli

Higss Cross Section Working Group
November 10, 2014

Introduction

modeling $\dagger \dagger+$ HF jets at NLO+PS

possible theoretical predictions:

- tt at NLO + b(b)-jet by SMC (POWHEG or

MadGraph5_aMC@NLO)

- tt + jet (can be b-jet) at NLO + b(b) by SMC (PowHel)
- tt + 2jets (one can be b-jet) at NLO + b(b) by SMC (SHERPA+OpenLoops)
- $\dagger t+b b$ at NLO + SMC: in this talk

Uncertainties in NLO predictions

- missing higher orders:

QCD: largest, but NNLO is not feasible during run 2
\Rightarrow estimated by variation of renormalization and
factorization scales, $\mu_{\mathrm{R}}=\mu_{\mathrm{F}}=\mu_{0}$ in $\left[\mu_{0} / 2,2 \mu_{0}\right]$
EW: NLO not known, but expected to be small except perhaps for large transverse momenta of t quarks or jets

- PDF: take envelope of predictions made using various PDF sets
- neglected b-quark mass: <3\% at LO [1001.4006]
- treatment of $t \rightarrow b$ e v_{e} decay if included, NLO for
$\mathrm{pp} \rightarrow \mathrm{b} \ell \mathrm{v}_{\ell}+\mathrm{b} \ell \mathrm{v}_{\ell}+\mathrm{bb}$ is not available at present

Matching NLO to PS

- two methods of matching:

MC@NLO: SHERPA+OpenLoops (phenomenology in arXiv:1309.5912 and next talk)
MadGraph5_aMC@NLO (phenomenology in third talk)
POWHEG: PowHel (phenomenology in J. Phys. G 41 (2014) 075005 [arXiv:1303.6291], arXiv:1307.1347 and 1408.0266, also in this talk)

Uncertainties in PowHel

- matching uncertainty
- choice of SMC and its tune
- neglected truncated showers: likely negligible, but not checked
- approximate treatment of $t \rightarrow b$ ℓ ve decay (our option: DECAYER)
here we study
- scale uncertainty at NLO
- matching uncertainty
- SMC uncertainty
- PDF and scale uncertainties in NLO+PS focusing on hardest b-jets
scale uncertainties at NLO

Choice of scales

- QCD corrections are
- large with scales $\mu_{0}=m_{+}$or $m_{+}+m_{b \bar{b}} / 2$ (about 80%)
- moderate with dynamical scale $\mu_{0}=\left(m_{+}^{2}{ }^{2} \text { Pт,bрт, }^{\text {b }}\right)^{1 / 4}$ (about 25\%) (proposed in arXiv:1001.4006), implying better convergence by emulating higher order effects through CKKW-type scale choice

Choice of scales

- QCD corrections are
- large with scales $\mu_{\text {fix }}=m_{+}$or $m_{+}+m_{b Б} / 2$ (about 70\%)
- moderate with dynamical scale $\mu_{\text {dyn }}=\left(m_{+}^{2}{ }^{2}, b p_{T, \bar{b}}\right)^{1 / 4}$ (about 25\%) (proposed in arXiv:1001.4006), implying better convergence by emulating higher order effects through CKKW-type scale choice,

but

- we want to simulate higher order effects through the PS: $\mu_{d y n}$ is too small near threshold where cross section is largest, even for a b with $p_{T}=100$ GeV and another b with $p_{T}=20 \mathrm{GeV} \mu_{d y n}=90 \mathrm{GeV}$ < m_{+}resulting in an artificially large xsection at LO

Choice of scales

We use the dynamical scale $\mu_{d y n}=H_{T} / 2$, where H_{T} is the scalar sum of transverse masses of final-state particles that is a good scale also near threshold

With this scale
\checkmark the K factor is even smaller, implying good convergence
\checkmark the cross sections are
smaller (w/ cuts of 1001.4006):

$\sigma_{L O}=534 \mathrm{fb}, \sigma_{N L O}=630 \mathrm{fb}, K=1.18$
scale dependence: ${ }^{+32 \%}{ }_{-22 \%}$, largest if $\mu_{R}=\mu_{F}=\mu_{d y n}$

Small changes in shapes of distributions

Small changes in shapes of distributions

matching uncertainty

Formal accuracy of the POWHEG MC

$$
\langle O\rangle=\int \mathrm{d} \Phi_{\mathrm{B}} \widetilde{B}\left[\Delta\left(p_{\perp, \min }\right) O\left(\Phi_{\mathrm{B}}\right)+\int \mathrm{d} \Phi_{\mathrm{rad}} \Delta\left(p_{\perp}\right) \frac{R}{B} O\left(\Phi_{\mathrm{R}}\right)\right]=
$$

$$
=\left\{\int \mathrm{d} \Phi_{\mathrm{B}}[B+V] O\left(\Phi_{\mathrm{B}}\right)+\int \mathrm{d} \Phi_{\mathrm{R}} R O\left(\Phi_{\mathrm{R}}\right)\right\}\left(1+\mathcal{O}\left(\alpha_{\mathrm{S}}\right)\right)
$$

LHE vs. NLO

Four possible forms of predictions

LHE: distributions from events at Born+1st radiation
Decay: on-shell decays of heavy particles (\dagger-quarks), shower and hadronization effects turned off

PS: parton showering (PYTHIA or HERWIG) included (\dagger-quarks kept stable)

Full SMC: decays, parton showering and hadronization are included by using PYTHIA or HERWIG

Number and type of particles are very different => to check that SMC does what we expect, we employ selection cuts to keep the cross section fixed

Selection cuts for decay vs. SMC

- Applied on the LHE's:
- A track was considered as a possible jet constituent if $\left|\eta^{\text {track }}\right|<5$, t-quarks were excluded from the set of possible tracks. Jets were reconstructed with the anti-kt algorithm using $\mathrm{R}=0.4$.
- Events with invariant mass of the b̄b-jet pair below $m^{\min }{ }_{b \bar{b}}=100 \mathrm{GeV}$ were discarded.
- Applied on LHE's and checked also on the existing particles at different stages of evolution:
- we require $\mathrm{P}_{\min , \mathrm{j}}=25 \mathrm{GeV}$ and
- at least two, one b- \& one $\bar{b}-$ jet with $\left|n_{b(\bar{b})}\right|<2.5$.

NLO vs. PS vs. LHE at $14 \mathrm{TeV}, \mu=\mathrm{H}_{\mathrm{T}} / 2$

NLO vs. PS vs. LHE at $14 \mathrm{TeV}, \mu=\mathrm{H}_{\mathrm{T}} / 2$

NLO vs. PS and decay vs. full SMC at $14 \mathrm{TeV}, \mu=\mathrm{H}_{\mathrm{T}} / 2$

Message: matching and SMC is under control decay of t-quarks can have big impact

Cuts for estimating the effect of the PS

applied separately on LHEs and after PS

- jets reconstructed with the anti-kT algorithm using $R=0.5$, with at least two well-separated b-jets (ΔR
$>0.5)$, PTmin,bjet $=40 \mathrm{GeV}$ and $\left|n_{\mathrm{j}}\right|<2.5$

> but with

- t-quarks kept stable

PS vs. LHE at $14 \mathrm{TeV}, \mu=\mathrm{H}_{\mathrm{T}} / 2$

PS vs. LHE at $14 \mathrm{TeV}, \mu=\mathrm{H}_{\mathrm{T}} / 2$

> Message:
> PYTHIA-6 and PYTHIA-8 give similar predictions but this may depend on selection cuts (see below)

PDF and scale uncertainties of NLO+PS predictions

Cuts for scale, PDF and SMC uncertainties

from CMS PAS TOP-13-010

- jets reconstructed with the anti-kt algorithm using $R=0.5$, with TTmin,$j=40 \mathrm{GeV}$ and $\left|n_{j}\right|<2.5$
- at least one pair of isolated (with $R=0.3, I_{\text {rel }}=0.15$) opposite sign leptons with $\mathrm{p}_{\text {Tmin, } \ell}=20 \mathrm{GeV} / \mathrm{c}$, $\left|n_{e}\right|$ <2.4, 12 GeV < $\mathrm{mec}^{2}(\notin[77,107] \mathrm{GeV}$ if ee or $\mu \mu)$
- $\mathrm{PT}^{\text {miss }}=30 \mathrm{GeV} / \mathrm{c}$ if ee or $\mu \mu$
- at least four well separated b-jets with $\Delta R>0.5$ both from leptons and jets

PDF and scale uncertainties

PDF and scale uncertainties

PDF and scale uncertainties

SMC uncertainties

PYTHIA-6 vs. PYTHIA-8 at $14 \mathrm{TeV}, \mu=\mathrm{H}_{\mathrm{T}} / 2$

PYTHIA-6 vs. PYTHIA-8 at $14 \mathrm{TeV}, \mu=\mathrm{H}_{\mathrm{T}} / 2$

Conclusions and outlook

Conclusions

- K-factor and scale uncertainty of NLO prediction is moderate with dynamical scales, but choice of central scale matters (we prefer $\mathrm{H}_{T} / 2$ for NLO+PS)
- Matching is under control within scale uncertainty
- For NLO predictions matched with SMC
- scale uncertainties are +35\%-30\%
- PDF uncertainties are ~ 10\%
- SMC uncertainties are ~< 10\%
...but
- all conclusions are sensitive to selection cuts
- effects of decay of t-quarks could be important

Outlook

We are open to comparison of predictions from PowHel, SHERPA+OpenLoops \& MadGraph5_aMC@NLO with same set of parameters and cuts
(to be agreed together with experimentalists)

Selection cuts for NLO predictions

Cuts employed by Bevilacqua et al in arXiv:0907.4723

- A track was considered as a possible jet constituent if $\left|\eta^{\text {track }}\right|<5$, t-quarks were excluded from the set of possible tracks, jets were reconstructed with the k_{T}-algorithm using $\mathrm{R}=0.4$
- Events with invariant mass of the b \bar{b}-jet pair below $\mathrm{m}^{\text {min }}{ }_{b \bar{b}}=20 \mathrm{GeV}$ were discarded
- We require PTmin, $^{2}=20 \mathrm{GeV}$ and
- at least two, one b- and one $\overline{\mathrm{b}}$-jet, with $\left|\mathrm{yb}_{\mathrm{b}(\overline{\bar{b}})}\right|<2.5$

Cuts for background study for \dagger TH

Applied after full SMC

- a track was considered as a possible jet constituent if $\mathrm{l}^{\text {track }} \mid<5$, jets were reconstructed with the anti-kT algorithm using $\mathrm{R}=0.4$
we require
- at least six jets with Tmin,, $\mathrm{j}=20 \mathrm{GeV}$ and $\left|n_{\mathrm{j}}\right|<5$
- at least two b-jets \& two $\overline{\mathrm{b}}$-jets with $\left.\mid \eta_{\mathrm{b}} \overline{\mathrm{b}}\right)<2.7$, with MCTRUTH tagging
- at least one isolated (with $\mathrm{R}=0.4$) lepton with PTmin,e
$=20 \mathrm{GeV}$ and $\left|n_{e}\right|<2.5$
- $\mathrm{pT}^{\text {miss }}=15 \mathrm{GeV}$
to disentangle background ing_{39} the semileptonic $\dagger \bar{\mp}$ decay

$\bar{\dagger}+\mathrm{H}$ signal on $\dagger \bar{\dagger} \mathrm{b} \overline{\mathrm{b}}$ background

