Antimatter 2 - The Sequel

Rolf Landua CERN

A new conspiracy at CERN:

Preview of new book!

A new conspiracy at CERN:

Attempt to destroy Earth using black holes

A new conspiracy at CERN:

Attempt to destroy Earth using black holes

German Professor tries to save the World

Preview of new book!

A new conspiracy at CERN:

Attempt to destroy Earth using black holes

German Professor tries to save the World

CERN sued for the cost of 1 planet

Preview of new book!

A new conspiracy at CERN:

Attempt to destroy Earth using black holes

German Professor tries to save the World

CERN sued for the cost of 1 planet

Movie locations: Geneva, Hawaii, Den Haag, ...

Preview of new book!

A new conspiracy at CERN:

Attempt to destroy Earth using black holes

German Professor tries to save the World

CERN sued for the cost of 1 planet

Movie locations: Geneva, Hawaii, Den Haag, ...

How will it end?

Preview of new book!

A new conspiracy at CERN:

Attempt to destroy Earth using black holes

German Professor tries to save the World

CERN sued for the cost of 1 planet

Movie locations: Geneva, Hawaii, Den Haag, ...

How will it end?

Too absurd??

cern.ch/lsag/LSAG-Report.pdf

Trapping antiprotons

Trapping antiprotons

Antihydrogen

ATHENA and ATRAP Making antihydrogen Future developments

Trapping antiprotons

Antihydrogen ATHENA and ATRAP

Making antihydrogen

Future developments

Applications PET

Antiproton therapy?

Rocket propulsion??

The first nine antihydrogen atoms at CERN (1996)

How were the 9 antihydrogen atoms made at LEAR?

Annihilation of 9 anti-atoms ~ 2 nJ ~ Lifting a mosquito by 1 μ m

Press reactions (of course)

"Liberation" (France)

«C'est mille fois plus puissant qu'une réaction nucléaire normale»

Le Pr Oelert ne nie pas un possible usage militaire des antiatomes.

neuf antiatomes d'hydrogène.

Walter Oelert, professeur à l'Institut de recherches puis se sont déchirés en tombant sur le détecteur de sili-cium, l'antiproton d'un côté, l'antiélectron de l'autre. équipe germano-italienne réunie en 1993 qui a obtenu Pourralt-on faire une bombe avec cette antima-

Two questions to keep you awake

Two questions to keep you awake

1. With present techniques, what would be the price and delivery time for an 0.5 g anti-hydrogen bomb?

The Vatican?

Two questions to keep you awake

- 1. With present techniques, what would be the price and delivery time for an 0.5 g anti-hydrogen bomb?
- 2. How much antimatter propellant would you need to accelerate a 10-ton spacecraft to 95 % of the speed of light (assuming 100% efficiency)

The Vatican?

III. TRAPPING ANTIPARTICLES

RF trap ("Paul trap")

A radio-frequency current on the electrodes maintains an alternating electric field that confines charged particles in a small space.

RF trap ("Paul trap")

A radio-frequency current on the electrodes maintains an alternating electric field that confines charged particles in a small space.

Magnetic traps

Typical voltages: 1 - 100 V

For trapping: ~ several kV

Special case: Penning trap

Electrodes with hyperbolic shape

harmonic forces: $E_r \sim r$, $E_z \sim z$ precise oscillation frequencies!

$$V(x, y, z) = U_0 \left(\frac{x^2 + y^2 - 2z^2}{2r_0^2} \right)$$

The inertial mass of antiprotons (PS 196, LEAR)

G. Gabrielse

Moving antiprotons induce currents in trap wall

The 'sound of antiprotons' - at 89.3 MHz (cyclotron frequency)

Compare frequency of antiproton and negative hydrogen ions

G. Gabrielse

The inertial mass of antiprotons (PS 196, LEAR)

Moving antiprotons induce currents in trap wall

The 'sound of antiprotons' - at 89.3 MHz (cyclotron frequency)

Compare frequency of antiproton and negative hydrogen ions

Agreement to a precision of 9×10^{-11}

Extraction from AD to experiments: 5.3 MeV (~0.1 c), 3·10⁷

Reminder: Antiproton Production

Extraction from AD to experiments: 5.3 MeV (~0.1 c), 3·10⁷

Trapping antiprotons

Trapping antiprotons

Trap for antiproton capture and storage

IV. ANTIHYDROGEN

The race for cold antihydrogen

ATHENA and ATRAP - Experiments (Start 2000)

Find a way to make cold antihydrogen (done)
Trap and cool antihydrogen
Precision measurements

ATRAP

ATHENA

Antihydrogen = Hydrogen ??

Antihydrogen = Hydrogen ??

2S level is metastable (T ~ 120 ms)

- → Two photon laser-spectroscopy (IS-2S energy difference)
- \rightarrow very narrow line width = high precision: $\Delta v/v \sim 10^{-15}$
- → Long observation time need trapped (anti)atoms

AD

p- Production (GeV)

Deceleration (MeV)

AD

p- Production (GeV)

Deceleration (MeV)

Trapping (keV)

Cooling (meV)

AD

p- Production (GeV)

Deceleration (MeV)

Trapping (keV)

Cooling (meV)

Na-22

e⁺ Production (MeV)

Moderation

Accumulation (eV)

p- and e+ in mixing trap (cooling)

Antihydrogen formation

 $10^{8} e^{+}$

10⁴ p⁻

AD

p- Production (GeV)

Deceleration (MeV)

Trapping (keV)

Cooling (meV)

Na-22

e+ Production (MeV)

Moderation

Accumulation (eV)

 p^- and e^+ in mixing trap (cooling)

Antihydrogen formation

Detection of annihilation

Overview - ATHENA / AD-I

Antiproton capture trap

Deceleration and capture of antiprotons Penning trap in 3-T field at 15 K Cooling and accumulation in e⁻ plasma

²²Na source

Positron production via 22 Na(β^+) 22 Ne at 5.5 K Positron accumulator

Penning trap in 0.14-T field at 300 K

Mixing trap

Antihydrogen production

Nested Penning trap in 3-T field at 15 K

Detector

[M. Amoretti et al., NIM A **518** (2004) 679]

ATHENA Experiment

Positron Accumulation using Buffer Gas

Positron Accumulation using Buffer Gas

100 million positrons accumulated in 2 min

Recombination

*D.S. Hall, G. Gabrielse, Phys. Rev. Lett. 77, 1962 (1996)

Charged particles

2 layers of Si microstrip detectors

511 keV gammas

192 CsI crystals

Inner radius 4 cm, thickness ~ 3 cm 70% solid angle coverage Operates at 3 Tesla, 140 Kelvin

(C. Regenfus et al., NIM A501, 65 (2003))

Charged particles

2 layers of Si microstrip detectors

511 keV gammas

192 CsI crystals

Inner radius 4 cm, thickness ~ 3 cm 70% solid angle coverage Operates at 3 Tesla, 140 Kelvin

(C. Regenfus et al., NIM A501, 65 (2003))

Event analysis:

- 1. Reconstruct vertex from tracks of charged particles
- 2. Identify pairs of 511 keV γ -rays in time coincidence
- 3. Measure opening angle between the two γ -rays

Antihydrogen - The Movie

Antihydrogen - The Movie

First observation of cold antihydrogen

Opening Angle Distribution

[M. Amoretti et al., Nature 419 (2002) 456]

Data

Monte Carlo

Cryostat + Coi

Peak from back-to-back 511 keV photon pairs

Test: peak disappears when positrons are 'heated' (RF)

Correcting for detection efficiency: > 100,000 anti-atoms

Rate of antihydrogen production quite high

Initially > 100 Hz

Present state of the art

Number of produced antihydrogen atoms	Energy
---------------------------------------	--------

1996: 9 (PS210, CERN) 2 GeV

1998: 60 (Fermilab) 3 GeV

2002: > 1,000,000 (AD) 0.001 eV

Present state of the art

Number of	produced	antihydrogen	atoms	Energy
------------------	----------	--------------	-------	--------

1996: 9 (PS210, CERN) 2 GeV

1998: 60 (Fermilab) 3 GeV

2002: > 1,000,000 (AD) 0.001 eV

Antihydrogen production works What about trapping?

FUTURE DEVELOPMENTS

Next step: Trapping antihydrogen

How to trap antihydrogen

How to trap (neutral) antihydrogen?

- 1) magnetic moment ($\sim \mu_{e+}$)?
- 2) Laser cooling at 121.5 nm?
- 3) Other methods ??

Magnetic bottles?

Example: Sextupole magnet

Low field seeking atoms (50%) at r=0

BUT: Very shallow potential (~ 0.07 meV/T)

Realistic △B ~ 0.2-0.3 T ⇒ E < 0.02 meV

(reminder: produced antihydrogen has Ekin ~ 1-200 meV)

Trap antihydrogen from low energy 'Boltzmann tail'?

Antihydrogen trapping: Laser cooling?

121 nm laser needed
Prototype at MPI Munich
... only 50 nW

V. APPLICATIONS

Applications of antimatter - PET

Insert e⁺ emitting isotopes (C-11, N-13, O-15, F-18) into physiologically relevant molecules (O_2 , glucose, enzymes) and inject into patient.

Reconstruct place of positron annihilation with crystal calorimeter

Applications of antimatter - PET

Insert e⁺ emitting isotopes (C-11, N-13, O-15, F-18) into physiologically relevant molecules (O_2 , glucose, enzymes) and inject into patient.

Reconstruct place of positron annihilation with crystal calorimeter

Tumour therapy

Goal: destroy tumour without (too much) harm to healthy tissue

Gammas: exponential decay (peaks at beginning)

Charged particles: Bragg peak (Plateau/Peak better for high Z)

Antiprotons: like protons, but enhanced Bragg peak from annihilation

Antiproton Cell Experiment

Biological effectiveness of antiproton annihilation in cells

Additional damage by nuclear fragments of short range

Antiproton Cell Experiment

Equal cell mortality for tumour cells with 1/3 radiation dose (= damage to healthy cells)

Interesting result - now compare with Carbon ion therapy - dedicated facility ???

$$E = mc^2$$

 $20 \text{ kt TNT} \sim 8 \cdot 10^{13} \text{ J}$ 0.5 g antimatter + 0.5 g matter

$$E = mc^2$$

 $20 \text{ kt TNT} \sim 8 \cdot 10^{13} \text{ J}$ 0.5 g antimatter + 0.5 g matter

 $0.5 \text{ g antimatter} = 0.5 \cdot 10^{-3} \cdot 9 \cdot 10^{16} \text{ J} = 4.5 \cdot 10^{13} \text{ J}$

$$E = mc^2$$

 $20 \text{ kt TNT} \sim 8 \cdot 10^{13} \text{ J}$ 0.5 g antimatter + 0.5 g matter

 $0.5 \text{ g antimatter} = 0.5 \cdot 10^{-3} \cdot 9 \cdot 10^{16} \text{ J} = 4.5 \cdot 10^{13} \text{ J}$

Total energy needed (efficiency = 10^{-9}): $4.5 \cdot 10^{22}$ J

$$E = mc^2$$

 $20 \text{ kt TNT} \sim 8 \cdot 10^{13} \text{ J}$ 0.5 g antimatter + 0.5 g matter

 $0.5 \text{ g antimatter} = 0.5 \cdot 10^{-3} \cdot 9 \cdot 10^{16} \text{ J} = 4.5 \cdot 10^{13} \text{ J}$

Total energy needed (efficiency = 10^{-9}): $4.5 \cdot 10^{22}$ J

EDF discount price CERN (1 kWh = $3.6 \cdot 10^6 \text{ J} = 0.1 \in$):

Price ~ 10¹⁵ €

Antiproton bombs? $\mathbb{E} = mc^2$

$$E = mc^2$$

 $20 \text{ kt TNT} \sim 8 \cdot 10^{13} \text{ J}$ 0.5 g antimatter + 0.5 g matter

 $0.5 \text{ g antimatter} = 0.5 \cdot 10^{-3} \cdot 9 \cdot 10^{16} \text{ J} = 4.5 \cdot 10^{13} \text{ J}$

Total energy needed (efficiency = 10^{-9}): $4.5 \cdot 10^{22}$ J

EDF discount price CERN (1 kWh = $3.6 \cdot 10^6 \text{ J} = 0.1 \in$):

Price ~ 10¹⁵ €

Maximum production at CERN ~ 10^{14} antiprotons / (year ~ $3 \cdot 10^7$ sec)

Antiproton bombs? $\mathbb{E} = mc^2$

$$E = mc^2$$

 $20 \text{ kt TNT} \sim 8 \cdot 10^{13} \text{ J}$ 0.5 g antimatter + 0.5 g matter

 $0.5 \text{ g antimatter} = 0.5 \cdot 10^{-3} \cdot 9 \cdot 10^{16} \text{ J} = 4.5 \cdot 10^{13} \text{ J}$

Total energy needed (efficiency = 10^{-9}): $4.5 \cdot 10^{22}$ J

EDF discount price CERN (1 kWh = $3.6 \cdot 10^6 \text{ J} = 0.1 \in$):

Price ~ 10¹⁵ €

Maximum production at CERN ~ 10^{14} antiprotons / (year ~ $3 \cdot 10^7$ sec)

Delivery time ~ 3 billion years

10-ton spacecraft at 0.95 c:

$$E = \gamma mc^2 \sim 10 \cdot 10^4 \text{ kg} =$$

50 tons of antimatter + 50 t of matter

10-ton spacecraft at 0.95 c:

$$E = \gamma mc^2 \sim 10 \cdot 10^4 \text{ kg} =$$

50 tons of antimatter + 50 t of matter

Until somebody finds a clever way around these problems, this will stay fiction:

10-ton spacecraft at 0.95 c:

$$E = \gamma mc^2 \sim 10 \cdot 10^4 \text{ kg} =$$

50 tons of antimatter + 50 t of matter

Until somebody finds a clever way around these problems, this will stay fiction:

10-ton spacecraft at 0.95 c:

$$E = \gamma mc^2 \sim 10 \cdot 10^4 \text{ kg} =$$

50 tons of antimatter + 50 t of matter

Until somebody finds a clever way around these problems, this will stay fiction:

The End.