

R2E and Availability for P7 – report from workshop

D. Wollmann

with input from M. Brugger, R. Losito, L. Rossi, R. Schmidt, B. Todd, S. Uznanski

- Slides available in <u>INDICO</u>.
- Organizers: M. Brugger, L. Rossi, R. Schmidt, B. Todd, J. Wenninger, D. Wollmann
- 20 65 participants during the sessions

Session 3 – Cleaning insertions IR3 - IR7

Radiation damage issues and equipment maintenance planning.

Possible operational scenarios and respective loss distributions – B. Salvachua neasurement. Prompt radiation levels at critical locations – E. Skordis Radiation **monitoring**: what do we have and what do we need – M. Brugger Activation constraints, residual dose rate maps and **intervention scenarios** – C. Adorisio Assisted and **remote handling** options and tools – M. di Castro **Vacuum** equipment, optimization of dose/intervention times – V. Baglin Magnet lifetimes, optimization and dose/intervention times – P. Fessia **Cryo** equipment, optimization of dose/intervention times – S. Claudet **Collimator** equipment, optimization of dose/intervention times – O. Aberle Cables, Optical Fibers & Lights (including safety LEDs) – J. Devine **Alignment** systems & requirements – J.-F. Fuchs **Enclosed** section and affected equipment – I. Efthymiopoulos

Session 2 – Equipment exposed to radiation

Ongoing developments, plans for the next 5 years and requirements beyond.

- RF: Current Systems + Damper W. Hoefle
- RF: New Systems R. Calaga
- 💆 Power Converters: Control S. Uznanski
- Power Converters: Power Y. Thurel
- Cryogenics J. Casa-Cubillos
- QPS J. Steckert
- 🚊 Interlock Systems M. Zerlauth
- g LHC Beam Dumping System V. Senaj
- **BLM** B. Dehning
- Beam Instrumentation T. Lefevre
 - Vacuum Systems P. Krakowski
- Survey and Alignment M. Sosin
- 💂 🚆 WorldFIP E. Gousiou
 - Electronics in the RE G. Spiezia

LHC Cleaning insertions (IR3-IR7) – summary

- Activation in IR7 will become **comparable to hottest region in injectors** for HL-LHC (35x LS1).
- FLUKA calculations predict ~1MGy / 40fb⁻¹ up to LS3 on MBW and MQW.
- No known lifetime issues until LS3 for the equipment, but first problems encountered in cables/connectors (profibus) for vacuum equipment.
- General interest and support for robotics solutions (survey, vacuum, ...) →
 data transmission as bottleneck.
- Better understanding of losses in IR7 required and their dependency on operational parameters.
- 2015/16 radiation data essential to refine the predictions → improved monitoring required (including radical and ozone levels).
- Better understanding of future radiation levels important for the choice of replacement date of MQWs/MBWs → activation levels should still allow interventions on them.

S
(e)
eV
0
<u>.</u>
<u>m</u>
pe
8

	ANNUAL RADIATION LEVELS	Assumptions for various periods:	as re	ported in 2 then use	asurements 2012 summary ed with for scaling		similar to 2012 bit less lumi higher energy 25ns +scrubbing (x2 for ARC/DS)		50fb-1y-1 6.5TeV IR3/7: ~1x10 ¹⁶ ~2-3x10 ¹⁴ p.		100fb-1y-1 7TeV IR3/7: ~2x10 ¹⁶ ~3-4x10 ¹⁴ p. scaled with lumi		200fb-1y-1 7TeV IR3/7: ~4x10 ¹⁶ ~6x10 ¹⁴ p. scaled with lumi		400fb-1y-1 7TeV IR3/7: ~5x10 ¹⁶ ~6x10 ¹⁴ p. scaled with lumi		
	Location	Area Assumptions	HEH Fluence [cm ⁻² y ⁻¹]	Dose [Gy y ⁻¹]	HEH Fluence [cm ⁻² y ⁻¹] I-1	Dose [Gy y ⁻¹]	HEH Fluence [cm ⁻² y ⁻¹]	Dose [Gy y ⁻¹]	HEH Fluence [cm ⁻² y ⁻¹] J-2	Dose [Gy y ⁻¹]	HEH Fluence [cm ⁻² y ⁻¹] RUI	Dose [Gy y ⁻¹] N-3	HEH Fluence [cm ⁻² y ⁻¹]	Dose [Gy y ⁻¹] HL-	HEH Fluence [cm ⁻² y ⁻¹] LHC	Dose	
'			2011		20	2012		2015		[2016; 2018]		[2020; 2022]		[2025;			
)	Tunnel ARC MQ	beam-gas ~10 ¹⁵			3E+08	0.5	5E+08	1.0	5E+08	1.0	1E+09	2.0	2E+09	4.0	4E+09	8.0	
	Tunnel ARC MB	beam-gas ~10 ¹⁵			1E+08	0.2	2E+08	0.4	2E+08	0.4	4E+08	0.8	8E+08	1.6	2E+09	3.2	
<u>'</u>	Tunnel DS MQ				3E+09	5.0	5E+09	10.0	5E+09	10.0	1E+10	20.0	2E+10	40.0	4E+10	80.0	
'	Tunnel DS MB				1E+09	2.0	2E+09	4.0	2E+09	4.0	4E+09	8.0	8E+09	16.0	2E+10	32.0	
) [Tunnel DS Worst	worst RadMon/BLM			5E+09	10.0	1E+10	20.0	1E+10	20.0	2E+10	40.0	4E+10	80.0	8E+10	160.0	
	(/ _/	5	12.07		<u> </u>		02.07		02.07	J.1	22.00		02.00		02.00		
,	RRs P7		1E+07	NIL	4E+07	NIL	4E+07	NIL	1E+08	0.1	2E+08	0.2	5E+08	0.4	1E+09	0.8	
	W. T.			0.1		1.1				1.1	12.00	2.3		1.1	12.00		
	UJ/RE32	based on RadMon on tunnel side			1E+06	NIL	2E+06	NIL	2E+06	NIL	4E+06	NIL	8E+06	NIL	2E+07	NIL	
	UJ56		3E+07	NIL	2E+08	0.1	2E+08	0.1	5E+08	0.9	9E+08	1.8	2E+09	3.6	4E+09	7.2	
' H	UJ76		1E+07	NIL	8E+07	0.1	8E+07	0.1	2E+08	0.5	5E+08	1.0	1E+09	1.9	2E+09	3.8	
	ULs P1 start equ.	where 1st PCs are					2E+06	NIL	6E+06	NIL	1E+07	NIL	2E+07	NIL	5E+07	NIL	
' H	ULs P1 end equ.	towards US									1E+06	NIL	2E+06	NIL	4E+06	NIL	
· H	UPS P1/5 Corner	no equipment					2E+09	5.0	6E+09	12.0	1E+10	24.0	2E+10	48.0	5E+10	96.0	
, ,	UPS P1/5 Behind	+UX contribution									1E+06	NIL	2E+06	NIL	4E+06	NIL	l
- +	UX45		2E+06	NIL	2E+07	NIL	4E+07	NIL	4E+07	NIL	8E+07	0.1	2E+08	0.2	3E+08	0.4	l
-	UX65						1E+06	NIL	1E+06	NIL	2E+06	NIL	4E+06	NIL	8E+06	NIL	
1	UX85(b)		2E+08	0.2	3E+08	0.3	3E+08	0.3	6E+08	0.6	1E+09	1.2	2E+09	2.4	5E+09	4.8	
	US85		2E+07	NIL	1E+08	0.1	1E+08	0.1	2E+08	0.2	4E+08	0.4	8E+08	0.8	2E+09	1.6	
	UW85	shielding as efficient as designed					2E+06	NIL	4E+06	NIL	8E+06	NIL	2E+07	NIL	3E+07	NIL	
-	US45								1E+06	NIL	2E+06	NIL	4E+06	NIL	8E+06	NIL	1
	REs	shielding as is							1E+06	NIL	2E+06	NIL	4E+06	NIL	8E+06	NIL	1
	UJ23 (next UA23) UJ87 (next UA87)	injection losses remain comparable	2E+06	NIL	3E+06	NIL	6E+06	NIL	6E+06	NIL	1E+07	NIL	2E+07	NIL	5E+07	NIL	
	Mazes (e.g, UA23, UA83)	streaming based on RadMon reading			1E+06	NIL	2E+06	NIL	2E+06	NIL	4E+06	NIL	8E+06	NIL	2E+07	NIL	
	TZ76 (1 st 15m), UA63/67 (behind ducts) UJ33	ok, but to be monitored during operation					1E+06	NIL	2E+06	NIL	4E+06	NIL	8E+06	NIL	2E+07	NIL	
L	All Other	ok															ı
ligh			Colour Codes														
ligh umind HC	osity		н	EH			TID										
нС			low 1.00E+06			low	0.1										
		15 th HL-				ember 2014			D W/	ollman	n						
			high	1.00E+08		high	10.0			D. W							

Vacuum systems

P. KRAKOWSKI

- **5 R2E failures** in P7 in run1 (2 blocked PLCs, 3 burned switching PC) → **relocation** of vacuum equipment to UJ76.
- Arcs: only passive devices, all intelligent devices in safe areas.
- Total does objective: Vacuum controls equipment should stand 500Gy for HL-LHC (e.g. 24V power supplies for pumping groups).
- **Possible relocation** for future: relocate controllers of 96 Turbo molecular pumps (use long cable connections).
- Fluctuation of penning readings in P7 due to radiation → source (HV cable, gauge, controller?) to be identified; mitigation for LS2.
- Long term exposure to radiation: of cables, connectors, flexible connection for compressed air, bearings, carbon coating,
- Obsolescence is an issue, new designs required.
- Improving availability: improvement expected since relocation, learn with time.

Cryogenic systems

Juan CASAS-CUBILLOS

- Overall availability > 91.9%
- Commercial equipment in general (re-)located out of radiation areas.
- R2E faults have only share of 14% → not dominant and 2012 most of the SEE/
 SEU were transparent to LHC operation.
- Other effects: humidity, em-interference, aging, → loss of cryo-maintain 3x per year.
- Part of sensors and actuators are exchangeable. Duplications of some critical thermometers.
- Temperature sensors not exchangeable: qualified for high radiation (300Gy).
- Tunnel electronics has been designed to 1000Gy → ok for HL-LHC.
- **Consolidation** of electronics: electrical power supply, insulated temperature card for current leads → final tests to be performed in CHARM.
- Temperature monitoring for new Inner Triplets to be addressed

QPS J. Steckert

• Equipment in RR P7: crate controller/field bus coupler, quench detector 600A, quench detector IPQ, IPD, IT.

- Radiation tolerant quench detectors for 600A circuits and individual powered magnets were developed and installed in LS1.
- No need to relocate equipment from remaining RRs (RR13, RR17, RR53, RR57, RR73, RR77) as moderate dose (0.8Gy/y) expected for HL-LHC.
- Improved remote maintenance (e.g. power cycles).
- Quench heater discharge monitoring.

15th HL-LHC TC 1 December 2014 D. Wollmann

Interlock Systems

M. Zerlauth/I. Romera

- Beam Interlock System (BIC)
 - Not rad-tolerant → installed in protected areas (Uas, US), apart from client user boxes (CIBUs).
 - Some 10 out of 250 CIBU (UX85, UX45, RR73, RR77) can be affected during Run3 and HL-LHC.
- Powering Interlock System (PIC)
 - Used COTS components not rad-tolerant.
 - Few remote I/O modules in low radiation areas (RRs in P1/5/7) →
 components tested up to ~300Gy, opto-couplers & CPLDs to 150 Gy.
- Warm Magnet Interlock System (WIC)
 - COTS components not considered rad-tolerant and hence installed in protected areas.
 - Exceptions are remote I/Os installed in TI2/TI8 → tested up to
 250Gy, Magnet boxes to 1MGy.
- Fast Magnet Current Change Monitors (FMCM)
 - Not rad-tolerant → installed in radiation free areas.

Beam Instrumentation

T. Lefevre/B. Dehning

- **BLM front-end** electronics (below MQ, in RRs, UAs, UJs) qualified **to 500Gy** (life time limited by optical Laser diode).
- Replaced cables/fibres for BLMs in collimation regions.
- New radiation tolerant front-end for BLMs (with ASICs) under development.
- **BI** front- and back-end design approach (e.g. new fast wire scanners, MOPOS, ...):
 - Design goal: 100Gy/y, total dose of 1kGy.
 - Analog and digital front-end in tunnel.
 - Transmission via fiber over long distances.
 - Acquisition and control systems in surface buildings or protected areas.
- New collimators equipped with button BPMs

 rad-hard front-mend to reduce local cabling in IP7?

END

