November 20th, 2014

ICTP-NCP School on LHC Physics

LHC results: Standard Model (W, Z, γ, jets)

Roberto Tenchini INFN Pisa

Standard Model Physics INTRODUCTION WITH A BIT OF HISTORY

Introduction

- At LHC W, Z, γ physics, jet physics, top quark physics is called Standard Model
- "Standard" sounds like "boring", but it is not: historically new phenomena or new states were found by studying standard objects

Jupiter was supposed to be a standard planet !

Standard Model and new phenomena

Two important examples:

- Electroweak theory has shown that new heavy states can affect precision measurements (non-decoupling property, Veltman, 1977)
- Measurements of basic properties (e.g. Parton Distribution Functions, di-boson cross sections, etc.) is a pre-requisite for discoveries

W mass precision from 1986 to 2004

Only Published Results

(*) Preliminary w.a. 2004 : σ =34 MeV, weight of LEP 2/3, Tevatron 1/3

Z mass precision from 1986 to the end of LEP

Only Published Results

Strong Evidence of electroweak radiative corrections from Z and W mass

Top quark discovery and electroweak radiative corrections

The precision measurements

of the W and Z mass, together with other electroweak observables (e.g. initial and final state asymmetries) **test the Standard Model at the level of radiative corrections**

The **top quark mass** from the **direct** measurement **matches** the **indirect** determination from radiative corrections !

This is a slide from 2008

This is a slide from 2014

W and Z Physics at LHC

Cross sections and rates at LHC

Experiments: need stringent and efficient online selection criteria (trigger)

W / Z (Drell Yan) production

- Inclusive W and Z cross section
 - with muons
 - with electrons
 - with taus
- Associate W/Z+n-jets, W+c, Z+bb, etc.
- Off-shell (generic DY)
- Differential cross sections, asymmetries
- W mass, $\sin^2\theta_W$

Drell-Yan Process

Inclusive production of W and Z $% \left({{{\cal X}_{{\rm{A}}}} \right)$

- Large W (Z) cross section(*): ~ 20 nb (2 nb) and clean leptonic signatures
 - Theory: important test of NNLO QCD and higher order EW predictions
 - Sensitive to Parton Distribution Functions (PDF)
 - Experiment: important test of luminosity

$$\sigma_{W(Z)} \times BR(W(Z) \rightarrow leptons) = \frac{N_{W(Z)}^{obs} - N_{W(Z)}^{bkg}}{\epsilon_{W(Z)} A_{W(Z)} \int \mathcal{L} dt}$$

(*) cross section to one lepton species at 14 TeV

Basic ingredients of cross section measurements with leptons

- Trigger on leptons $(e,\mu,\tau) \rightarrow p_t$, isolation cuts
- Offline lepton selection \rightarrow cuts with improved reconstruction, define acceptance in fiducial region

– need to measure efficiencies from data !

- Suppress background (e.g. suppress jet production with transverse mass cut)
 - need to measure background from data !
 - (typical bkg: leptons from b,c decays, decay in flights of π , K, conversions $\gamma \rightarrow e^+e^-$,etc.)
- Need information on accelerator luminosity

example from 2010: μ+μ- inv mass spectrum, with trigger selection only (very low trigger thresholds !)

Example: Particle-based isolation

- Created by summing energy deposits from individual particles in ΔR=0.4 cone around the lepton
 - Avoids double counting of the energy deposit in the calorimeters from charged particles
 - Automatic footprint removal
- neutral hadron photon color photon particle-flow particle-flow to the sector to the se

- Pile-up contribution:
 - Negligible for charged hadrons from primary vertex
 - Neutral contribution corrected using the average energy density (ρ) from the pile-up and underlying event

Example from a W \rightarrow muon selection

- Selection of 'high pt' muon @ $\mathcal{L}=5x10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - No isolation criteria for muon at trigger level
 - $-P_{t} > 15 \text{ GeV} (P_{t} > 25 \text{ GeV offline})$
 - $-|\eta| < 2.1$ (trigger redundancy)
- Isolation (offline selection level):
 - (P_t sum all tracks in cone 0.4 around muon)/(P_t muon) < 0.12
- Measure Transverse Missing Energy (MET)
 - use for M_T definition and cut $M_T > 50$ GeV
 - (can also cut directly on MET)

$$\mathbf{M}_{\mathrm{T}} = \sqrt{2 p_{T}^{lepton} p_{T}^{\upsilon} (1 - \cos \varphi)}$$

Measure efficiency from data

- 1. Find a good electron in a $Z \rightarrow ee$ event that meets Tag criteria
- 2. Loop over ECAL-tower clusters in the event with transverse energy above, e.g., 15 GeV and calculate the cluster-Tag invariant mass (M)
- 3. The cluster satisfying, e.g. : 82<M<100 GeV is a Probe

Data-driven background measurement - Example -

- Take two variables with discriminating power (e.g. isolation and M_T)
- <u>Assume</u> that the two are uncorrelated
- Compute bkg from $N_{QCD} = N_d = N_a \times \frac{N_c}{N_b}$

(Correct for small signal contamination in a,b,c)

Luminosity determination

• The method is known as "Van Der Meer scan"

Beam intensities and crossing frequency are known with good accuracy The effective overlap area A can be determined by scans in separation

Details : LHC Report 1019 by Grafstrøm Burkhardt http://cdsweb.cern.ch/record/1056691

PRL 112 (2014) 191802

Z Boson

W Boson

Z and W production at 8 TeV

PRL 112 (2014) 191802

Z and W production at 8 TeV

Dilepton Drell Yan cross section

