

1

Lecture # 1

Muhammad Irfan Asghar National Centre for Physics

Introduction

Particle physics ultimate constituents of matter and the fundamental interactions Experiments have revealed whole families of short-lived particles Molecular hypothesis and the development of chemistry. Most scientist accepted matter aggregates of atoms.

- Radioactivity and the analysis of low energy scattering <u>atoms</u> have structure.
- Mass was concentrated in dense nucleus surrounded by cloud of electrons.
- The discovery of neutron 1930
- Geiger tubes and cloud chambers properties of cosmic ray particles.
- The modern discipline of particle physics high energy nuclear physics + cosmic ray physics

Particles and Interactions

Four interactions and their approximated strength at 10⁻¹⁸ cm are

Strong = 1 Electromagnetic = 10^{-2} Weak = 10^{-5} Gravitational = 10^{-39}

- Hundreds of new particles have been discovered
- Tried to group them into families with similar characteristics.
- Leptons do not obey strong interaction.
- Hadrons obey strong interactions.
- Hadrons are of two types:
- Baryons ½ integral spin,
- Mesons integral spin

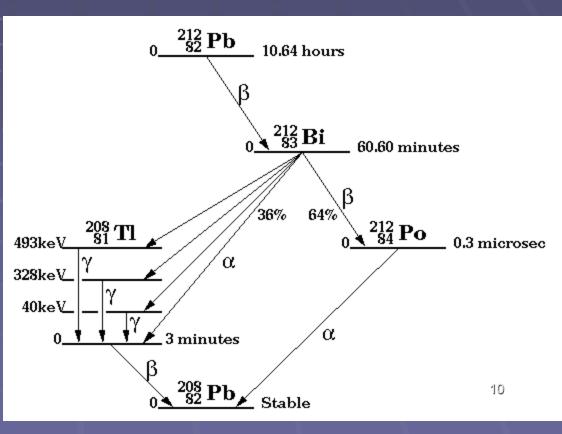
- Protons
- Neutrons
- Prof. Salam's weak neutral currents
- Bubble chamber
- Resonances can decay via strong interactions and thus have lifetime of 10⁻²³ sec
- Antimatter
- Gauge bosons

Detectors

- Piece of equipment for discovering the presence of something, such as metal, smoke etc
- How particles interact with matter ?
- The properties of the detectors used to measure these interactions
- Fundamental considerations involved in designing a particle physics experiment

Charge
Mass
Spin
Magnetic moment
Life time
Branching ratios

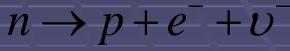
Tracking Momentum analysis Neutral particle detection Particle identification Triggering Data acquisition

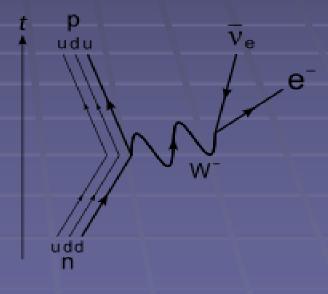


Alpha decay

- Radioactive decay
- Particle trapped in a potential well by nucleus
- Fundamentally quantum tunneling process
- Transition between nucleus levels
- A 5 MeV α-particle travels at 10⁷ m/s
- Short range, 3-4 cm in air

 $(Z,A) \rightarrow (Z-2,A-4)$





Beta decay

- Radioactive decay
- Fast electrons
- Weak interaction decay of neutron or proton
- Continuous energy spectrum, ranges from few keV to few tens of MeV

Electron capture

- β+ decay cannot occur in isolation
- Proton rich nuclei may also transform themselves via capture of an electron from one of the atomic orbitals
- Accompanied by electron capture process

 $energy + p + e^- \rightarrow n + \upsilon$

 Leaves hole, another atomic electron fills
 Emission of characteristic x-ray or auger electrons

Auger Electrons

- An excitation in the electron shell transferred atomic electron rather than to a characteristic x-ray
- This occurs after electron-capture
- Second ejected electron Auger electron
- Monoenergetic energy spectrum
- Energy not more than few keV
- Susceptible to self-absorption

Gamma Emission

- Nucleus has discrete energy levels
- Transition between these levels by electromagnetic radiations
- Photon energy ranges keV-MeV
- Characterize high binding energy
- Y rays

Annihilation Radiation

- Annihilation of positrons
- ²²Na irradiate absorbing material
- Positron will annihilate with the absorber electron to produce two photons
- Photons opposite direction

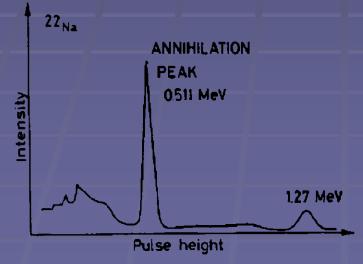
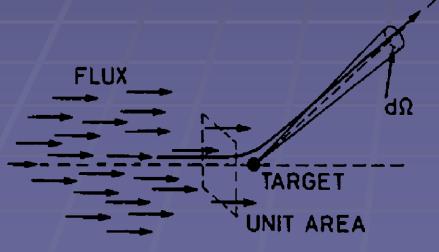


Fig. 1.4. Gamma-ray spectrum of a ²²Na source as observed with a Nal detector. Because of positron annihilation in the detector and the source itself, a peak at 511 keV is observed corresponding to the detection of one of the annihilation photons

Internal Conversion

- Nuclear excitation energy is directly transferred to an atomic electron rather than emitting a photon
- Electron K.E = excitation energy atomic B.E
- Electrons monoenergetic
- Same energy as γ rays
- Few hundered keV to few MeV
- Mostly k-shell electrons ejected
- Nuclear source of monoenergetic electrons
- Used for calibration purpose



Scattering Cross section

Differential cross-section

- Gives a measure of probability for a reaction to occur
- Calculated in the form of basic interaction between the particles.

 $\frac{1}{E} \frac{dN_s}{d\Omega}$ $d\sigma$ (E, Ω) $\sigma(E) = \int d\Omega \frac{d\sigma}{d\Omega}$ **Total cross-section**

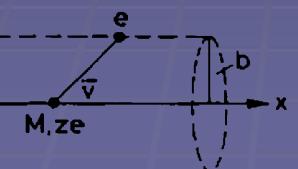
Fig. 2.1. Definition of the scattering cross section

Energy loss by atomic collisions

Two principal features passage of charged particle through matter
1- a loss of energy by particle
2- a deflection of the particle from its incident direction.

results of two These effects processes Inelastic collisions — atomic electrons Elastic scattering from nuclei Other process — Cherenkov radiation, nuclear reaction bremsstrahlung

- Inelastic collisions almost solely responsible
 In these collisions (δ = 10⁻¹⁷ 10⁻¹⁶ cm²), energy is transferred particle to the atom causing an ionization or excitation
- The amount transferred in each collision is very small fraction of the particle K.E
- Large number of collisions per unit path length
- Substantial cumulative energy loss is observed.



- Soft collisions excitation
- Hard collisions —— ionization
- δ -rays or knock-on electrons
- Inelastic collisions statistical in nature, their number per macroscopic path length large
- Elastic scattering from nuclei not as often as atomic collisions
- Average energy loss per unit path length
- Stopping power or $\frac{dE}{dx}$

Bohr formula – Classical case Heavy particle with charge ze, M and v Calculations — impact parameter Electron is free and at initially at rest Inicident particle — undeviated Bohr formula good for heavy particles Breaks for light particles, because of quantum effects → not contain electronic coll. loss

 $-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_e \upsilon^2} N_e \ln \frac{\gamma^2 m \upsilon^3}{z e^2 \overline{\upsilon}}$

The Bethe-Bloch Formula

- The energy transfer is parameterized in terms of momentum transfer rather than impact parameter.
- Momentum transfer is measureable quantity
- Impact parameter is not measureable

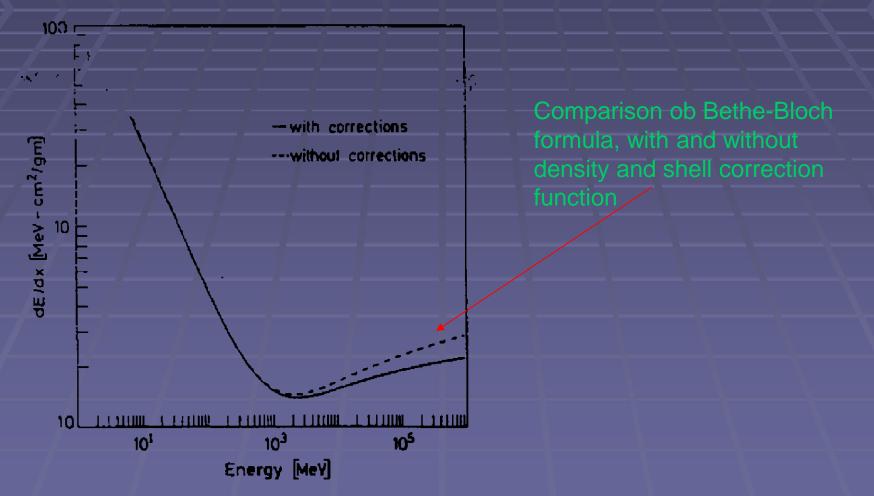
Shell correction

 $-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2}$ $\left[\ln\left(\frac{2m_e\gamma^2\upsilon^2 W_{\text{max}}}{I^2}\right) - 2\beta^2 - \delta - 2\frac{1}{2}\right]$

 r_e : Classical electron radius Electron mass N_a Avogadro's number Mean excitation potential Z Atomic number of absorbing material Atomic weight of absorbing material Density of absorbing material ρ Charge of incident particle v/c of incident particle **Density correction** δ Shell correction ^w Maximum energy transfer in one collision

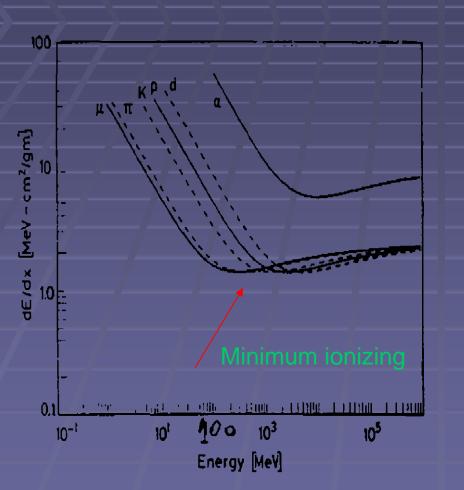
Density effect

- Electric field of particle polarize atoms
- Electrons far from particle electric field intensity
- Collisions with these outer —-contribute less total energy loss than predicted
- Energy increases velocity increases radius over which integration — increases
- Distant collisions contribute more
- This effect depends on density density effect


shielded from full

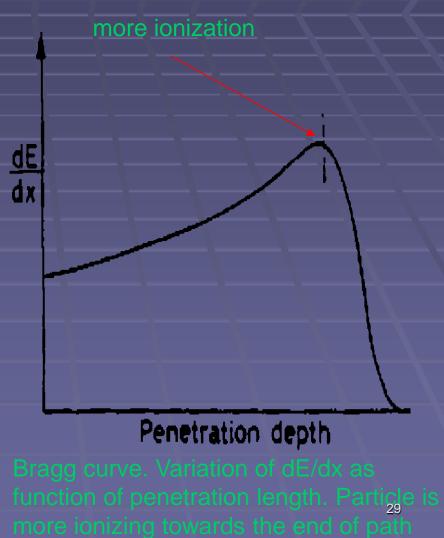
Shell correction

- Shell correction accounts velocity of particle comparable or smaller — orbital velocity of electron
- At such energies assumption electron stationary — not valid
- Bethe-Bloch formula breaks down
- The correction is generally small
- Other corrections also exist

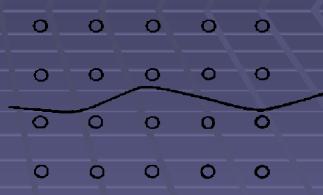


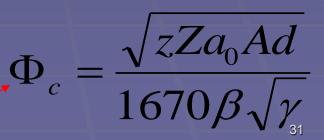
 B^2

Energy dependence of $\frac{dE}{dx}$


- At non-relativistic energies $\frac{dE}{dx}$ is dominated by
- Decreases with increase of velocity until 0.96c
- Minimum ionizing
- Below the minimum ionizing each particle exhibits its own curve
- This characteristic is used to identify the particle
- At low energy region the Bethe-bloch formula breaksdown
- Energy beyond 0.96c → ¹/_{β²} almost constant
 ^{dE}/_{dx} rises → logarithmic dependence
 Relativistic rise → cancelled by density correctio²⁸

The stopping power dE/dx as function o energy for different particles


- At low velocity _____ comparable _____ velocity of orbital electron
- $\frac{dE}{dx}$ reaches a maximum
 for the second s
- No. of complicated effects
- Tendency of the particle for part of the time
- appear
- pickup electrons
- Lowers effective charge lowers $\frac{dE}{dx}$
- Heavy particle energy deposition per unit path length — less at beginning — more at end
- Bragg curve

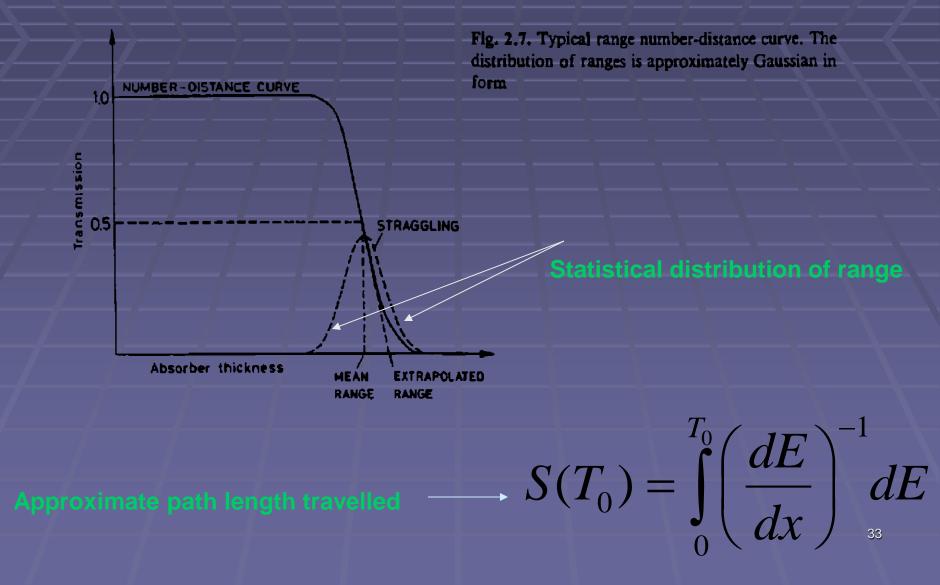


Channeling

- Materials ____ spatially symmetric atomic structures.
- Particle is incident at angles less than some critical angle with respect to a symmetry axis of the crystal.
- Critical angle
- Particle a series of correlated small angle scatterings
- Slowly oscillating trajectory

Schematic diagram of scattering. Particle suffers a series of correlated scatterings

Critical angle



Range

- How far penetrate before lose all of their energy ? Range
- Range depends material, particle their energy.
- How —— calculate range
- Beam of desired energy different thickness
- Ratio —— transmitted to incident
- Range-number distance curve
- Range approached ratio drops.
- The curve does not drop immediately to background level.

- The curve slopes down certain spread of thickness
- Energy loss not continuous, statistical in nature.
- Two identical particles with same initial energy will not suffer the same number of collisions.
- A measurement ensemble of identical particles, — statistical distribution of ranges centered about some mean value.
- Mean range roughly half particles absorbed

This phenomenon —— range straggling Exact range all particles absorbed Tangent to the curve — at midpoint extrapolating to zero level This value —— extrapolated or practical range Mean range ______ s(T_0) = \int_0^{T_0} \left(\frac{dE}{dx} \right)^{-1} dE \right)
 Multiple scattering ---> small ---> heavy particle Semi-empirical formula $R(T_0) = R(T_{\min}) + \int_{T_0}^{T_0} \left(\frac{dE}{dx}\right)^{-1} dE_{35}$

Collision lossBremsstrahlung

$$\left(\frac{dE}{dx}\right)_{tot} = \left(\frac{dE}{dx}\right)_{coll} + \left(\frac{dE}{dx}\right)_{rad}$$

- Electron-electron bremsstrahlung
- Critical energy
- Radiation length
- Range of electrons

Collision loss

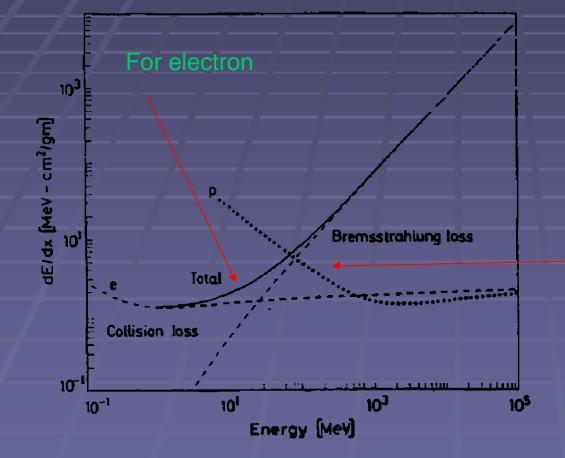
Basic mechanism of collision loss valid for electrons and positrons Bethe-Bloch formula _____modification Two reasons Assumption small mass ____remains undeflected invalid Calculations consider indistinguishab/lity^{ident particle} • Allowable energy transfer term $W_{max} = T_e^{T_e}$ $-\frac{dE}{dx} = 2\Pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{\tau^2(\tau+2)}{2\left(\frac{I}{m c^2}\right)^2} + F(\tau) - \delta - 2\frac{C}{Z} \right]$

Bremsstrahlung

- Small contribution few MeV or less
- At 10's of MeV, radiation loss comparable or greater than collision loss
- Dominant energy loss mechanism ——for high energy electrons —— electromagnetic radiation
- Synchrotron radiation circular acceleration
- Bremsstrahlung motion through matter
- Bremsstrahlung cross-section inverse square of particle mass

$$\frac{d\sigma}{dk} = 5\frac{e^2}{hc}z_1^4 z_2^2 \left(\frac{mc}{M\upsilon_1}\right)^2 \frac{r_e^2}{k} \ln \frac{M\upsilon_1^2 \gamma^2}{k}$$

38



Electron-electron bremsstrahlung

E-E bremsstrahlung — arises from field of atomic electrons Critical energy $\longrightarrow E = E_c$ for each material Above this enrgy —— radiat. loss —— dominate collision-ionization loss Radiation length —— distance over which electron energy is reduced by 1/e due to radiation loss only Range of electrons - different from cal $\left(\frac{dE}{dx}\right)_{rad} = \left(\frac{dE}{dx}\right)_{rad} = \left(\frac{dE}{dx}\right)_{rad}$ $L_{rad} = \frac{716 Ag / cm^2}{Z(Z+1) \ln(287 / \sqrt{Z})}$

Radiation loss vs collision loss for electrons in copper

Multiple Coulomb Scattering

- Charged particles ---- repeated elastic scattering from nuclei
- Small probability

Rutherford formula

Image: $\frac{1}{\sin^4(\theta_2)}$ dependence \longrightarrow s deflections

small angular

 $\frac{d\sigma}{d\Omega} = z_1^2 z_2^2 r_e^2 \frac{\binom{m_e c}{\beta p}^2}{4 \sin^4(\theta)}$

- Small energy transfer negligible
- Resultant zigzag path
- Cumulative effect is net deflection

Single scattering

- Thin absorber _____ small prob. of more than one coulomb scattering
- Rutherford formula —— valid
- Plural scattering
- Average number of scattering < 20</p>
- Neither simple R.F nor statistical method valid

Multiple scattering

Average number of scattering > 20

- Small energy loss
- Statistical method to obtain net angle deflection
- Small angle approximation —— by Moliere
- Generally valid ---- upto 30 9

 $P(\theta)d\Omega = \eta d\eta \left(2\exp\left(-\eta^2\right) + \frac{F_1(\eta)}{B} + \frac{F_2(\eta)}{B^2}\right)$

- Backscattring of low energy electrons
- Susceptible to large angle deflections from nuclei

Moliere polar angle

Multiple scattering of a charged particle. The scale and angle are greatly exaggerated Fig. 2.1 scale ar

θ

Backscattering of low energy electrons Probability is so high, — multiply and turned around altogether Absorber Backscattering — out of absorber Effect strong — low energy electrons Depends on incident angle High-Z material Nal Non-collimated electrons, 80 % reflected back electrons incident have Ratio backscattered electrons

The interaction of neutrons

- No coulomb interaction with electron or nuclei
- Principal mean of interaction strong force with nuclei
- These interactions are rare —— short range
 - short range • $\simeq 10^{-13} cm$
- Neutrons must come within $\longrightarrow \simeq 10^{-13} cm$
- Normal matter mainly empty
- Neutron very penetrating particle

- Prinipal mechanism of energy loss
- Elastic scattering from nuclei MeV range
- Inelastic scattering nucleus is left in excited state gamma emission
- Neutron must have inelastic collision to occur
- Radioactive neutron capture
- Neutron capture cross-section
- Valid at low energies

 $\approx \frac{1}{\upsilon}$

Resonance peaks superimposed upon 1/v dependence
 Other nuclear interactions (n,p), (n,d), (n,α), eV-keV

Fission

High energy hadron shower

conclusions

Role of detectors in HEP

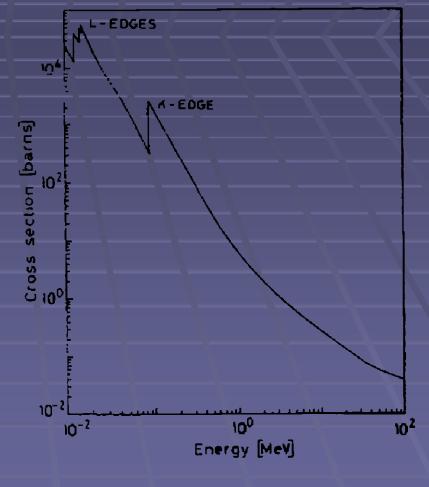
Image: definition of energy loss calculation

- Energy dependence of $-\frac{dE}{dx}$
- Channeling
- Range
- Energy loss of electrons and positrons
- Multiple coulomb scattering
- Interaction of neutrons

Thanks

The interactions of photons

- Behavior of photons (x-rays, y-rays) different from charged particles
- x-rays and γ-rays are many times more penetrating
- Much smaller cross-section relative to electron inelastic collisions
- P.E, C.S and P.P remove photons from beam
- Beam of photons is not degraded
- Photoelectric effect
- Compton scattering (including Thomson and Rayleigh scattering
- Pair production)

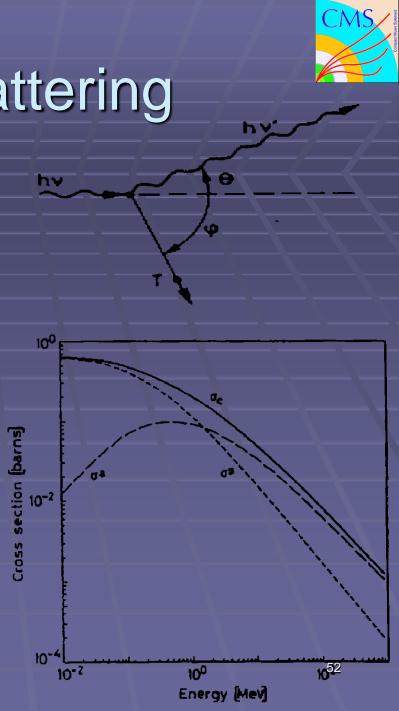


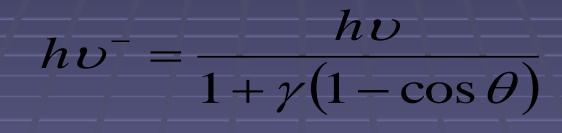
Photoelectric effect

- Absorption of photon by atomic electron
- Ejection of electron from atom
- Energy of outgoing electron

 $\mathbf{E} = h\upsilon - B.E$

- P.E always occur on bound electrons
- Nucleus absorb recoil momentum
- Cross-section increases as k-shell energy is approached
- L-absorption, M-absorption


Photoelectric cross-section as a function of incident photon estergy



Compton scattering

- Best understood process in photon interaction
- Scattering of photons on free electrons
- Compton scattered cross-section
- Average fraction of total energy contained in scattered photon
- Compton absorption cross-section
- Average energy transferred to recoil electron
- Thomson and Rayleigh scattering
- Coherent scattering

$$\sigma_c = \sigma^s + \sigma^a$$

 $T = h\upsilon - h\upsilon^{-}$

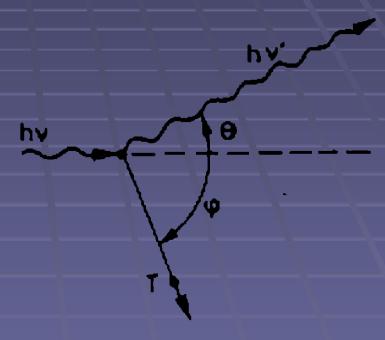


Fig. 2.22. Kinematics of Compton scattering

Pair production

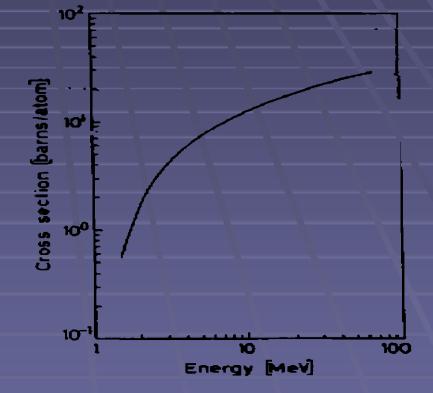
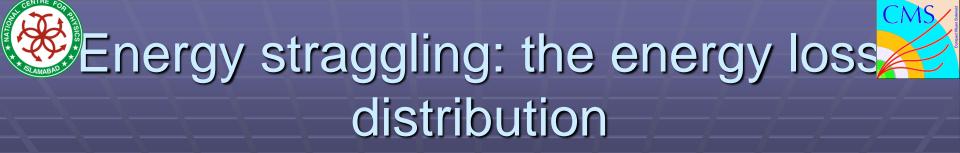



Fig. 2.25. Pair production crc section in lead

Backup slides

Thick absorber
Very thick absorber
Thin absorber