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Introduction 

 Particle physics          ultimate constituents 

of matter and the fundamental interactions 

 Experiments have revealed whole families 

of short-lived particles 

 Molecular hypothesis and the 

development of chemistry. 

 Most scientist accepted        matter  

aggregates of atoms. 
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 Radioactivity and the analysis of low energy 
scattering             atoms have structure. 

 Mass was concentrated in dense nucleus 
surrounded by cloud of electrons. 

 The discovery of neutron - 1930  

 Geiger tubes and cloud chambers          
properties of cosmic ray particles. 

 The modern discipline of particle physics         
high energy nuclear physics + cosmic ray 
physics  
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 Particles and Interactions 

 Four interactions and their approximated 

strength at 10-18 cm are 
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 Hundreds of new particles have been 

discovered  

 Tried to group them into families with similar 

characteristics. 

 Leptons do not obey strong interaction. 

 Hadrons obey strong interactions. 

 Hadrons are of two types:  

 Baryons          ½ integral spin, 

 Mesons           integral spin  
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 Protons 

 Neutrons 

 Prof. Salam’s          weak neutral currents 

 Bubble chamber 

 Resonances can decay via strong interactions 
and thus have lifetime of 10-23 sec 

 Antimatter 

 Gauge bosons         
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Detectors  

 

 Piece of equipment for discovering the presence 
of something, such as metal, smoke etc 

 Particle detectors are extensions of our senses: 
make particle            visible to human senses 

 How particles interact with matter ? 

 The properties of the detectors used to measure 
these interactions 

 Fundamental considerations involved in 
designing  a particle physics experiment 
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 Charge 

 Mass 

 Spin 

 Magnetic moment 

 Life time 

 Branching ratios 
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 Tracking 

 Momentum analysis 

 Neutral particle detection 

 Particle identification 

 Triggering 

 Data acquisition 
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Alpha decay 

 Radioactive decay 

 Particle trapped in a 

potential well by 

nucleus 

 Fundamentally quantum 

tunneling process 

 Transition between 

nucleus levels 

 A 5 MeV α-particle 

travels at 107 m/s 

 Short range, 3-4 cm in 

air 

     4,2, AZAZ
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Beta decay 

 Radioactive decay 

 Fast electrons 

 Weak interaction 

decay of neutron or 

proton 

 Continuous energy 

spectrum, ranges from 

few keV to few tens of 

MeV 

 

  epn
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Electron capture 

 

 β+ decay cannot occur in isolation 

 Proton rich nuclei may also transform 
themselves via capture of an electron from 
one of the atomic orbitals 

 Accompanied by electron capture process 

 

 

 Leaves hole, another atomic electron fills 

 Emission of characteristic x-ray or auger 
electrons  

  nepenergy
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Auger Electrons 

 An excitation        in the electron shell     

transferred         atomic electron rather than to a 

characteristic x-ray 

 This occurs after electron-capture 

 Second ejected electron         Auger electron 

 Monoenergetic energy spectrum 

 Energy not more than few keV 

 Susceptible to self-absorption 
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Gamma Emission 

 Nucleus has discrete energy levels 

 Transition between these levels by 

electromagnetic radiations 

 Photon energy ranges keV-MeV 

 Characterize high binding energy 

         rays 

 


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Annihilation Radiation 

 Annihilation of positrons 

                   irradiate absorbing material 

 Positron will annihilate with the absorber 

electron to produce two photons 

 Photons          opposite direction 

 

 

Na22
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Internal Conversion 

 Nuclear excitation energy is directly 
transferred to an atomic electron rather than 
emitting a photon 

 Electron K.E = excitation energy – atomic 
B.E 

 Electrons monoenergetic 

 Same energy as         rays 

 Few hundered keV to few MeV 

 Mostly k-shell electrons ejected 

 Nuclear source of monoenergetic electrons 

 Used for calibration purpose 


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 Scattering Cross section 

 Gives a measure of 

probability  for a 

reaction to occur 

 Calculated in the form 

of basic interaction 

between the particles. 
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Energy loss by atomic collisions 

 Two principal features           passage of 

charged particle through matter 

 1-  a loss of energy by particle 

      2-  a deflection of the particle from its 

incident direction. 
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 These effects         results of two 

processes 

 Inelastic collisions         atomic electrons 

 Elastic scattering from nuclei 

 Other process         Cherenkov radiation, 

            nuclear reaction 

           bremsstrahlung  
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 Inelastic collisions        almost solely responsible 

 In these collisions (δ = 10-17 – 10-16 cm2), energy 

is transferred       particle to the atom causing an 

ionization or excitation 

 The amount transferred in each collision is very 

small fraction of the particle K.E 

 Large number of collisions per unit path length 

 Substantial cumulative energy loss is observed.   
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 Soft collisions         excitation 

 Hard collisions         ionization 

     -rays or knock-on electrons 

 Inelastic collisions          statistical in nature, their 

number per macroscopic  path length large 

 Elastic scattering from nuclei        not as often as 

atomic collisions 

 Average energy loss per unit path length 

 Stopping power or  
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Bohr formula – Classical case 
 Heavy particle with charge ze,M and v 

 Calculations           impact parameter  

 Electron is free and at initially at rest 

 Inicident particle           undeviated 

 Bohr formula good for heavy particles 

 Breaks for light particles, because of quantum 

effects        not contain electronic coll. loss  
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The Bethe-Bloch Formula 
 The energy transfer is parameterized in terms 

of momentum transfer rather than impact 

parameter. 

 Momentum transfer is measureable quantity 

 Impact parameter is not measureable 
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Classical electron radius 

Electron mass 

Avogadro’s number 

Mean excitation potential 

Atomic number of absorbing material 

Atomic weight of absorbing material 

Density of absorbing material 

Charge of incident particle 

v/c of incident particle 

Density correction 

Shell correction 

Maximum energy transfer in one collision 
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 Density effect 

 Electric field of particle        polarize atoms  

 Electrons far from particle        shielded from full 
electric field intensity 

 Collisions with these outer       contribute less        
total energy loss than predicted 

 Energy increases        velocity increases radius 
over which integration        increases 

 Distant collisions        contribute more 

 This effect        depends on density        density 
effect 
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 Shell correction 

 Shell correction accounts        velocity of particle        

comparable or smaller        orbital velocity of 

electron 

 At such energies assumption         electron 

stationary         not valid 

 Bethe-Bloch formula breaks down 

 The correction is generally small 

 Other corrections also exist 
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Comparison ob Bethe-Bloch 

formula, with and without 

density and shell correction 

function 
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Energy dependence of    

 At non-relativistic energies       is dominated by    

 Decreases with increase of velocity until 0.96c 

 Minimum ionizing 

 Below the minimum ionizing each particle exhibits its 

own curve 

 This characteristic is used to identify the particle 

 At low energy region the Bethe-bloch formula 

breaksdown 

 Energy beyond 0.96c               almost constant 

            rises         logarithmic dependence 

 Relativistic rise          cancelled by density correction 
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The stopping power dE/dx as function of 

energy for different particles 

Bragg curve. Variation of dE/dx as 

function of penetration length. Particle is 

more ionizing towards the end of path 

more ionization 

Minimum ionizing 
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 At low velocity         comparable          velocity 

of orbital electron 

         reaches a maximum           drops sharply 
again. 

 No. of complicated effects          appear 

 Tendency of the particle          pickup electrons 
for part of the time 

 Lowers        effective charge         lowers  

 Heavy particle         energy deposition per unit 
path length         less at beginning         more at 
end 

 Bragg curve 

dx

dE

dx

dE
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Channeling 

 Materials         spatially 
symmetric atomic structures. 

 Particle is incident at angles 
less than some critical angle 
with respect to a symmetry 
axis of the crystal. 

 Critical angle 

 Particle         a series of 
correlated small angle 
scatterings 

 Slowly oscillating trajectory 
1670

0AdzZa
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Critical angle 

Schematic diagram of 

scattering. Particle suffers a 

series of correlated scatterings  
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Range 

 How far penetrate          before lose all of their 
energy ?              Range 

 Range depends            material, particle        
their energy. 

 How           calculate range 

 Beam of desired energy        different thickness 

 Ratio            transmitted to incident 

 Range-number distance curve 

 Range approached           ratio drops.  

 The curve does not drop immediately to 
background level.  
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 The curve slopes down           certain spread of 
thickness 

 Energy loss        not continuous,        statistical in 
nature. 

 Two identical particles with same initial energy 
will not suffer the same number of collisions. 

 A measurement          ensemble of identical 
particles,         statistical distribution of ranges 
centered about some mean value. 

 Mean range         roughly half particles absorbed 
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 This phenomenon         range straggling 

 Exact range        all particles absorbed 

 Tangent to the curve          at midpoint       

extrapolating to zero level 

  This value          extrapolated or practical range 

 Mean range 

 Multiple scattering          small        heavy particle 

  Semi-empirical formula 
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Energy loss of electrons and 

positrons 

 Collision loss 

 Bremsstrahlung 

 

 

 

 Electron-electron bremsstrahlung 

 Critical energy 

 Radiation length 

 Range of electrons 
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Collision loss 
 Basic mechanism of collision loss valid for electrons 

and positrons 

 Bethe-Bloch formula         modification 

 Two reasons 

 Assumption small mass          remains undeflected 

             invalid 

        Calculations consider indistinguishability 

 Allowable energy transfer term  
2max

eT
W 

 
 

































Z

C
F

cm
I

A

Z
cmrN

dx

dE

e

eea 2

2

2
ln

1
2

2

2

2

2

22







Kinetic energy of 

incident particle 

37 



Bremsstrahlung 

 Small contribution          few MeV or less 

 At 10’s of MeV, radiation loss         comparable 

or greater than collision loss 

 Dominant energy loss mechanism       for high 

energy electrons        electromagnetic radiation 

 Synchrotron radiation         circular acceleration 

 Bremsstrahlung          motion through matter 

 Bremsstrahlung cross-section          inverse 

square of particle mass 
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Electron-electron bremsstrahlung 
 

 E-E bremsstrahlung         arises from field of 
atomic electrons 

   Critical energy                            for each material 

 Above this enrgy          radiat. loss        dominate 
collision-ionization loss 

 Radiation length            distance over which 
electron energy is reduced by 1/e due to 
radiation loss only 

 Range of electrons    different from cal. 
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Radiation loss vs 

collision loss for 

electrons in copper.  

For electron 

For proton 
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Multiple Coulomb Scattering 
 Charged particles          repeated elastic 

scattering from nuclei 

 Small probability  

 

 

 

                  dependence           small angular 
deflections 

 Small energy transfer           negligible 

 Resultant         zigzag path 

 Cumulative effect is net deflection 
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 Single scattering 

 Thin absorber             small prob. of more than 

one coulomb scattering 

 Rutherford formula          valid 

 Plural scattering 

 Average number of scattering < 20 

 Neither          simple R.F nor statistical method 

valid 
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 Multiple scattering 

 Average number of scattering > 20 

 Small energy loss 

 Statistical method      to obtain net angle deflection 

 Small angle approximation           by Moliere 

 Generally valid            upto 30 θ 

 Backscattring of low energy electrons 

 Susceptible to large angle deflections from nuclei 
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 Backscattering of low energy electrons 

 Probability is so high,        multiply and turned 
around altogether 

 Backscattering         out of absorber 

 Effect strong         low energy electrons 

 Depends on incident angle 

 High-Z material NaI 

 Non-collimated electrons,  

   80 % reflected back 

 Ratio backscattered         electrons incident 
electrons 

Backscattering of electrons due to large angle multiple scattering 
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The interaction of neutrons 

 No coulomb interaction with electron or nuclei 

 Principal mean of interaction          strong force 

with nuclei 

 These interactions are rare           short range 

 Neutrons must come within  

 Normal matter         mainly empty 

 Neutron         very penetrating particle 
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 Prinipal mechanism of energy loss 

 Elastic scattering from nuclei           MeV range 

 Inelastic scattering          nucleus is left in excited 

state         gamma emission 

 Neutron must have           1 MeV         for 

inelastic collision to occur 

 Radioactive neutron capture 

 Neutron capture cross-section 

 Valid          at low energies 

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 Resonance peaks superimposed upon          

1/ν dependence 

 Other nuclear interactions (n,p), (n,d), 

(n,α),   eV-keV 

 Fission 

 High energy hadron shower 
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conclusions 

 Role of detectors in HEP 

                     tried to understand basic expression 
of energy loss calculation 

 Energy dependence of  

 Channeling 

 Range 

 Energy loss of electrons and positrons 

 Multiple coulomb scattering 

 Interaction of neutrons 

 

dx
dE

dx
dE

48 



 

Thanks 

49 



The interactions of photons 

 Behavior of photons (x-rays, γ-rays) different from 
charged particles 

 x-rays and γ-rays are many times more penetrating  

 Much smaller cross-section relative to electron inelastic 
collisions 

 P.E, C.S and P.P remove photons from beam 

 Beam of photons is not degraded 

  Photoelectric effect 

 Compton scattering (including Thomson and Rayleigh 
scattering 

 Pair production) 
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Photoelectric effect 

 Absorption of photon by 
atomic electron 

 Ejection of electron from 
atom 

 Energy of outgoing electron 

 

 

 P.E always occur on bound 
electrons 

 Nucleus absorb recoil 
momentum 

 Cross-section increases as 
k-shell energy is approached 

 L-absorption, M-absorption 
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Photoelectric cross-section as a 

function of incident photon energy 51 



Compton scattering 
 Best understood process in photon 

interaction 

 Scattering of photons on free 
electrons 

 Compton scattered cross-section 

 Average fraction of total energy 
contained in scattered photon 

 Compton absorption cross-section 

 Average energy transferred to recoil 
electron 

 

 Thomson and Rayleigh scattering 

 Coherent scattering 
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Pair production 
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Backup slides 
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Energy straggling: the energy loss 

distribution 

 Thick absorber 

 Very thick absorber 

 Thin absorber 

58 


