
Programming in Python –
Lecture#1

Adeel-ur-Rehman

Programming in Python

11/25/2014 ASC, National Centre for Physics 2

Scheme of Lecture

What is Python?
History of Python
Installation of Python
Interactive Mode
Python Basics
Functions
String Handling
Data Structures
Using Modules

Programming in Python

11/25/2014 ASC, National Centre for Physics 3

What is Python?

Python is a computer programming language
which is:
 General-purpose
 Open source
 Object-oriented
 Interpreted

Used by hundreds of thousands of developers
around the world in areas such as:
 Internet scripting
 System programming
 User interfaces

Programming in Python

11/25/2014 ASC, National Centre for Physics 4

What is Python?

Combines remarkable power with very
clear syntax.

Also usable as an extension language.

Has portable implementation:
 Many brands of UNIX

 Windows

 OS/2

 Mac

 Amiga

Programming in Python

11/25/2014 ASC, National Centre for Physics 5

History of Python

Created in the early 1990s

By Guido van Rossum.

At Stichting Mathematisch Centrum in the
Netherlands.

As a successor of a language called ABC.

Guido remains Python’s principal author.

Includes many contributions from others.

Programming in Python

11/25/2014 ASC, National Centre for Physics 8

Installation of Python

The current production versions are Python 2.7.8 and
Python 3.4.2.

Download Python-2.7.8.tgz file from the URL:
http://www.python.org/download/

Unzip and untar it by the command:
 tar -zxvf Python-2.7.8.tgz

Change to the Python-2.7.8 directory and run:
 ./configure to make the Make file

 make to create ./python executable

 make install to install ./python

http://www.python.org/download/releases/2.6.3/
http://www.python.org/download/releases/3.1.1/
http://www.python.org/download/

Programming in Python

11/25/2014 ASC, National Centre for Physics 9

Interactive Mode
On Linux systems, the Python is already
installed usually.
But it does not have any unique interface for
programming in it.
An attractive interface is IDLE which does not
get automatically installed with the Linux
distribution.
Type python on the console and then try the
statement print “Python Course” on the
invoked interpreter prompt.
To use the interpreter prompt for executing
Python statements is called interactive mode.

Programming in Python

11/25/2014 ASC, National Centre for Physics 10

Operators in Python

Operators Description

lambda Lambda Expression

or Boolean OR

and Boolean AND

not x Boolean NOT

Programming in Python

11/25/2014 ASC, National Centre for Physics 11

Operators in Python

Operators Description

in, not in Membership tests

is, is not Identity tests

<, <=, >, >=, !=, == Comparisons

| Bitwise OR

Programming in Python

11/25/2014 ASC, National Centre for Physics 12

Operators in Python

Operators Description

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and
Subtraction

Programming in Python

11/25/2014 ASC, National Centre for Physics 13

Operators in Python

Operators Description

*, /, % Multiplication, Division
and Remainder

+x, -x Positive, Negative

~x Bitwise NOT

** Exponentiation

Programming in Python

11/25/2014 ASC, National Centre for Physics 14

Operators in Python

Operators Description

x.attribute Attribute reference

x[index] Subscription

x[index:index] Slicing

f(arguments, ...) Function call

Programming in Python

11/25/2014 ASC, National Centre for Physics 15

Operators in Python

Operators Description

(expressions, ...) Binding or tuple display

[expressions, ...] List display

{key:datum, ...} Dictionary display

`expressions, ...` String conversion

Programming in Python

11/25/2014 ASC, National Centre for Physics 16

Decision Making Statements
Decision Making in Python

number = 23

guess = int(raw_input('Enter an integer : '))

if guess == number:
print 'Congratulations, you guessed it’

print "(but you don't win any prizes!)"

elif guess < number:
print 'No, it is a little higher than that.'

else:
print 'No, it is a little lower than that.'

print 'Done'

Programming in Python

11/25/2014 ASC, National Centre for Physics 17

Loops

Loops makes an execution of a program
chunk iterative.

Two types of loops in Python:
 for loop

 while loop

When our iterations are countable , we often
use for loop.

When our iterations are uncountable, we
often use while loop.

Programming in Python

11/25/2014 ASC, National Centre for Physics 18

While Loop Example
While Loop Demonstration
number = 23
stop = False
while not stop:

guess = int(raw_input('Enter an integer : '))
if guess == number:

print 'Congratulations, you guessed it.'
stop = True

elif guess < number:
print 'No, it is a little higher than that.'

else:
print 'No, it is a little lower than that.'

else:
print 'The while loop is over.'
print 'I can do whatever I want here.'

print 'Done.'

Programming in Python

11/25/2014 ASC, National Centre for Physics 19

For Loop Example

For Loop Demonstration

for i in range(1, 5):

print i # 1 2 3 4

else:

print 'The for loop is over.'

Programming in Python

11/25/2014 ASC, National Centre for Physics 20

The break Statement

The break statement is used to break out of a
loop statement.

i.e., stop the execution of a looping
statement.
 even if the loop condition has not become false

 or the sequence of items has been completely
iterated over

An important note is that if you break out of
a for or while loop, any loop else block is not
executed.

Programming in Python

11/25/2014 ASC, National Centre for Physics 21

Using The break Statement

Demonstrating break statement

while True:

s = raw_input('Enter something : ')

if s == 'quit':

break

print 'Length of the string is', len(s)

print 'Done'

Programming in Python

11/25/2014 ASC, National Centre for Physics 22

The continue Statement

It means:

 To skip the rest of the statements in the
current loop cycle.

 and to continue to the next iteration of the
loop.

Here is an example of continue
statement:

Programming in Python

11/25/2014 ASC, National Centre for Physics 23

Using The continue Statement

while True:

s = raw_input('Enter something : ')

if s == 'quit':

break

if len(s) < 4:

continue

print 'Sufficient length'

Programming in Python

11/25/2014 ASC, National Centre for Physics 24

 The pass Statement

The pass statement does nothing.

It can be used when a statement is
required syntactically but the program
requires no action.

For example:

while True:

pass # Busy-wait for keyboard interrupt

Programming in Python

11/25/2014 ASC, National Centre for Physics 25

Functions

Functions are reusable pieces of programs.

They allow us to give a name to a block of
statements.

We can execute that block of statements by
just using that name anywhere in our
program and any number of times.

This is known as calling the function.

Programming in Python

11/25/2014 ASC, National Centre for Physics 26

Functions

Functions are defined using the def keyword.

This is followed by an identifier name for the
function.

This is followed by a pair of parentheses
which may enclose some names of variables.

The line ends with a colon and this is
followed by a new block of statements which
forms the body of the function.

Programming in Python

11/25/2014 ASC, National Centre for Physics 27

Defining a function

def sayHello():

print 'Hello World!' # A new block

End of the function

sayHello() # call the function

Programming in Python

11/25/2014 ASC, National Centre for Physics 28

Function Parameters

Are values we supply to the function to perform any
task.
Specified within the pair of parentheses in the
function definition, separated by commas.
When we call the function, we supply the values in
the same way and order.
the names given in the function definition are called
parameters.
the values we supply in the function call are called
arguments.
Arguments are passed using call by value (where the
value is always an object reference, not the value of
the object).

Programming in Python

11/25/2014 ASC, National Centre for Physics 29

Using Function Parameters
Demonstrating Function Parameters

def printMax(a, b):

if a > b:
print a, 'is maximum'

else:
print b, 'is maximum'

printMax(3, 4) # Directly give literal values

x = -5

y = -7

printMax(x, y) # Give variables as arguments

Programming in Python

11/25/2014 ASC, National Centre for Physics 30

Local and Global Variables

While declaring variables inside a function
definition:
 They are not related in any way to other variables

with the same names used outside the function

 That is, variable declarations are local to the
function.

This is called the scope of the variable.

All variables have the scope of the block they
are declared in, starting from the point of
definition of the variable.

Programming in Python

11/25/2014 ASC, National Centre for Physics 31

Using Local Variables

Demonstrating local variables

def func(x):
print 'Local x is', x

x = 2

print 'Changed local x to', x

x = 50

func(x)

print 'x is still', x

Programming in Python

11/25/2014 ASC, National Centre for Physics 32

Local and Global Variables

Global variables are used for assigning to a
variable defined outside the function.
This is used to declare that the variable is
global i.e. it is not local.
It is impossible to assign to a variable defined
outside a function without the global
statement.
We can specify more than one global
variables using the same global statement.

 For example, global x, y, z .

Programming in Python

11/25/2014 ASC, National Centre for Physics 33

Using global variables
demonstrating global variables

def func():

 global x

 print 'x is', x

 x = 2

 print 'Changed x to', x

x = 50

func()

print 'Value of x is', x

Programming in Python

11/25/2014 ASC, National Centre for Physics 34

The return Statement
The return statement is used to return from a function

 i.e. break out of the function.
We can optionally return a value from the function as well.
Note that a return statement without a value is equivalent
to return None.
None is a special value in Python which presents
nothingness.
For example, it is used to indicate that a variable has no
value if the variable has a value of None.
Every function implicitly contains a return None statement.
We can see this by running print someFunction() where
the function someFunction does not use the return
statement such as
def someFunction():
 pass

Programming in Python

11/25/2014 ASC, National Centre for Physics 35

The return Statement
Demonstrating the return Statement

def max(x, y):
 if x > y:
 return x
 else:
 return y
print max(2, 3)

Programming in Python

11/25/2014 ASC, National Centre for Physics 36

Strings

A string is a sequence of characters.

Strings are basically just words.

Usage of strings:

 Using Single Quotes (')

 Using Double Quotes(")

 Using Triple Quotes (''' or """)

Programming in Python

11/25/2014 ASC, National Centre for Physics 37

Important Features of Strings

Escape Sequences.

 These are the characters starting from ‘\’
(backslash).

 ‘\’ means that the following character has a
special meaning in the current context.

 There are various escape characters (also
called escape sequences).

 Some of them are:

Programming in Python

11/25/2014 ASC, National Centre for Physics 38

Escape Sequences

Escape Sequence Description

\n Newline. Position the screen
cursor to the beginning of the
next line.

\t Horizontal tab. Move the screen
cursor to the next tab stop.

\r Carriage return. Position the
screen cursor to the beginning
of the current line; do not

advance to the next line.

Programming in Python

11/25/2014 ASC, National Centre for Physics 39

Escape Sequences

\a Alert. Sound the system bell
(beep)

\\ Backslash. Used to print a
backslash character.

\” Double quote. Used to print a
double quote character.

Programming in Python

11/25/2014 ASC, National Centre for Physics 40

Important Features of Strings

Raw Strings.

 To avoid special processing on a string
such as escape sequences

 Specify a raw string by prefixing r or R to
the string

 e.g., r"Newlines are indicated by \n."

Programming in Python

11/25/2014 ASC, National Centre for Physics 41

Important Features of Strings

Unicode Strings.
 Unicode is a standard used for

internationalization

 For writing text in our native language
such as Urdu or Arabic, we need to have a
Unicode-enabled text editor

 To use Unicode strings in Python, we prefix
the string with u or U

 E.g., u"This is a Unicode string."

Programming in Python

11/25/2014 ASC, National Centre for Physics 42

Important Features of Strings

Strings are immutable.

 Once created, cannot be changed

String literal concatenation.

 Placing two string literals side by side get
concatenated automatically by Python.

 E.g., 'What\'s ' "your name?" is
automatically converted to "What's your
name?" .

Programming in Python

11/25/2014 ASC, National Centre for Physics 43

Some Important String Methods

Demonstrating some String Methods
name = 'Swaroop' # This is a string object
if name.startswith('Swa'):

print 'Yes, the string starts with "Swa"'
if 'a' in name:

print 'Yes, it contains the string "a"'
if name.find('war') != -1:

print 'Yes, it contains the string "war"'
delimiter = '-*-'
mylist = [‘Pakistan', 'China', 'Finland', 'Brazil']
print delimiter.join(mylist)

Programming in Python

11/25/2014 ASC, National Centre for Physics 44

Python’s Built-in Data Structures

Structures which hold data together.

Used to store a collection of related
data.

There are three built-in data structures
in Python:
 List

 Tuple

 Dictionary

Programming in Python

11/25/2014 ASC, National Centre for Physics 45

List

A data structure that holds an ordered
collection of items.

i.e. you can store a sequence of items
in a list.

The list of items should be enclosed in
square brackets separated by
commas.

We can add, remove or search for items
in a list.

Programming in Python

11/25/2014 ASC, National Centre for Physics 46

Using a List

List Demonstration
shoplist = ['apple', 'mango', 'carrot', 'banana']
print 'I have', len(shoplist), 'items to purchase.'
print 'These items are:',
for item in shoplist:

print item,
print '\nI also have to buy rice.'
shoplist.append('rice')
print 'My shopping list now is', shoplist

Programming in Python

11/25/2014 ASC, National Centre for Physics 47

Using a List

shoplist.sort()

print 'Sorted shopping list is', shoplist

print 'The first item I will buy is', shoplist[0]

olditem = shoplist[0]

del shoplist[0]

print 'I bought the', olditem

print 'My shopping list now is', shoplist

Programming in Python

11/25/2014 ASC, National Centre for Physics 48

List

We can access members of the list by
using their position.

Remember that Python starts counting
from 0.

if we want to access the first item in a
list then we can use mylist[0] just like
arrays.

Lists are mutable; these can be
modified.

Programming in Python

11/25/2014 ASC, National Centre for Physics 49

Tuple
Tuples are just like lists except that
they are immutable.
i.e. we cannot modify tuples.
Tuples are defined by specifying items
separated by commas within a pair of
parentheses.
Typically used in cases where a
statement or a user-defined function
can safely assume that the collection of
values i.e. the tuple of values used will
not change.

Programming in Python

11/25/2014 ASC, National Centre for Physics 50

Using Tuples

Tuple Demonstration

zoo = ('wolf', 'elephant', 'penguin')

print 'Number of animals in the zoo is', len(zoo)

new_zoo = ('monkey', 'dolphin', zoo)

print 'Number of animals in the new zoo is', len(new_zoo)

print new_zoo # Prints all the animals in the new_zoo

print new_zoo[2] # Prints animals brought from zoo

print new_zoo[2][2] # Prints the last animal from zoo

Programming in Python

11/25/2014 ASC, National Centre for Physics 51

Dictionary

A dictionary is like an address-book used to
find address/contact details of a person by
knowing only his/her name.

i.e. we associate keys (name) with values
(details).

Note that the key must be unique.

i.e. we cannot find out the correct
information if we have two persons with the
exact same name.

Programming in Python

11/25/2014 ASC, National Centre for Physics 52

Dictionary

We can use only immutable values (like
strings) for keys of a dictionary.

But We can use either immutable or
mutable values for values.

This basically means to say that we can
use only simple objects as keys.

Pairs of keys and values are specified in
a dictionary by using the notation:

Programming in Python

11/25/2014 ASC, National Centre for Physics 53

Dictionary

d = {key1 : value1, key2 : value2 }.

Notice that:

 the key and value pairs are separated by a
colon

 pairs are separated themselves by commas

 all this is enclosed in a pair of curly
brackets or braces

Programming in Python

11/25/2014 ASC, National Centre for Physics 54

Using Dictionaries

Dictionary Demonstration

ab={ 'Swaroop' : 'python@g2swaroop.net',
 'Miguel' : 'miguel@novell.com',

 'Larry' : 'larry@wall.org',

 'Spammer' : 'spammer@hotmail.com' }

print "Swaroop's address is %s" % ab['Swaroop']

Adding a key/value pair

ab['Guido'] = 'guido@python.org'

Programming in Python

11/25/2014 ASC, National Centre for Physics 55

Using Dictionaries

Deleting a key/value pair

del ab['Spammer']

print "\nThere are %d contacts in the address-\
book\n" % len(ab)

for name, address in ab.items():

print 'Contact %s at %s' % (name, address)

if ab.has_key('Guido'):

print "\nGuido's address is %s" % ab['Guido']

Programming in Python

11/25/2014 ASC, National Centre for Physics 56

Sequences

Lists, tuples and strings are examples of
sequences.

Two of the main features of a sequence
is:
 the indexing operation which allows us to

fetch a particular item in the sequence

 and the slicing operation which allows us
to retrieve a slice of the sequence i.e. a
part of the sequence

Programming in Python

11/25/2014 ASC, National Centre for Physics 57

Using Sequences

Sequence Demonstration
shoplist = ['apple', 'mango', 'carrot', 'banana']
Indexing or 'Subscription'
print shoplist[0]
print shoplist[1]
print shoplist[2]
print shoplist[3]
print shoplist[-1]
print shoplist[-2]

Programming in Python

11/25/2014 ASC, National Centre for Physics 58

Using Sequences

Slicing using a list

print shoplist[1:3]

print shoplist[2:]

print shoplist[1:-1]

print shoplist[:]

Programming in Python

11/25/2014 ASC, National Centre for Physics 59

Using Sequences

Slicing using a string

name = 'swaroop'

print name[1:3]

print name[2:]

print name[1:-1]

print name[:]

Programming in Python

11/25/2014 ASC, National Centre for Physics 60

References

Lists are examples of objects.

When you create an object and assign it
to a variable, the variable only refers to
the object and is not the object itself.

i.e. the variable points to that part of
our computer's memory where the list
is stored.

Programming in Python

11/25/2014 ASC, National Centre for Physics 61

Objects and References

Demonstrating object slicing

shoplist = ['apple', 'mango', 'carrot', 'banana']

mylist = shoplist # Referencing i.e. aliasing

del shoplist[0]

print 'shoplist is', shoplist

print 'mylist is', mylist

mylist = shoplist[:] # Slicing i.e. copying

del mylist[0]

print 'shoplist is', shoplist

print 'mylist is', mylist

Programming in Python

11/25/2014 ASC, National Centre for Physics 62

Modules

We can reuse code in our program by defining
functions once.

What if we want to reuse a number of functions in
other programs we write?

The solution is modules.

A module is basically a file containing all our
functions and variables that we have defined.

The filename of the module must have a .py
extension.

A module can be imported by another program to
make use of its functionality.

Programming in Python

11/25/2014 ASC, National Centre for Physics 63

The sys Module

sys stands for System

The sys module contains system-level
information, like:

 The version of Python you're running.

 i.e., (sys.version or sys.version_info),

 And system-level options like the maximum
allowed recursion

 i.e., depth (sys.getrecursionlimit() and
sys.setrecursionlimit()).

Programming in Python

11/25/2014 ASC, National Centre for Physics 64

Using sys module

A use of sys module

import sys

print 'The command line arguments used are:'

for i in sys.argv: # list of command-line args

print i

print '\n\nThe PYTHONPATH is', sys.path, '\n'

Programming in Python

11/25/2014 ASC, National Centre for Physics 65

The os module

os stands for Operating System.

The os module has lots of useful
functions for manipulating files and
processes – the core of an operating
system.

And os.path has functions for
manipulating file and directory paths.

Programming in Python

11/25/2014 ASC, National Centre for Physics 66

Using os module
A use of os module
import os
print os.getcwd()
os.chdir(“/dev”)
print os.listdir(os.getcwd())
print os.getpid()
print os.getppid()
print os.getuid()
print os.getgid()

Programming in Python

11/25/2014 ASC, National Centre for Physics 67

The Module Search Path

When a module named os is imported,
the interpreter searches for a file
named ‘os.py’ in the:

 Current directory

 In the list of directories specified by the
environment variable PYTHONPATH.

 In an installation-dependent default path;

 on UNIX, this is usually ‘.:/usr/local/lib/python’.

Programming in Python

11/25/2014 ASC, National Centre for Physics 68

The Module Search Path

Actually, modules are searched in the
list of directories given by the variable
sys.path.

 Which is initialized from the directory
containing the input script (or the current
directory).

 PYTHONPATH

 Installation-dependent default.

Programming in Python

11/25/2014 ASC, National Centre for Physics 69

Byte-Compiled .pyc files

Importing a module is a relatively costly affair.

So Python does some optimizations to create byte-
compiled files with the extension .pyc .

If you import a module such as, say, module.py, then
Python creates a corresponding byte-compiled
module.pyc.

This file is useful when you import the module the
next time (even from a different program)
 i.e., it will be much faster.

 These byte-compiled files are platform-independent.

Programming in Python

11/25/2014 ASC, National Centre for Physics 70

The from.. import statement
If we want to directly import the argv variable
into our program, then we can use the from
sys import argv statement.

If we want to import all the functions, classes
and variables in the sys module, then we can
use the from sys import * statement.

This works for any module.

In general, avoid using the from..import
statement and use the import statement
instead since our program will be much more
readable that way.

