
ASC, National Centre for Physics

Programming Python – Lecture#2

Mr. Adeel-ur-Rehman

Programming Python

ASC, National Centre for Physics

Scheme of Lecture

More on Functions

More on Lists

Comparing different Data Structures

Using Packages

Formatting I/O

Pickle Module

ASC, National Centre for Physics

More on Functions…

Default Argument Values

Lambda Forms

Documentation Strings

Programming Python

ASC, National Centre for Physics

Default Argument Values
For some functions, we may want to make
some parameters as optional.

In that case, we use default values if the user
does not want to provide values for such
parameters.

This is done with the help of default
argument values.

We can specify default argument values for
parameters by following the parameter name
in the function definition with the assignment
operator (=) followed by the default
argument.

Programming Python

ASC, National Centre for Physics

Using Default Argument Values

Demonstrating default arg. values

def say(s, times = 1):

 print s * times

say('Hello')

say('World', 5)

Programming Python

ASC, National Centre for Physics

Using Default Argument Values

Only those parameters which are at the end of the
parameter list can be given default argument values.

 i.e. we cannot have a parameter with a default
argument value before a parameter without a default
argument value, in the order of parameters declared,
in the function parameter list.

This is because values are assigned to the
parameters by position.

For example:
 def func(a, b=5) is valid

 but def func(a=5, b) is not valid.

Programming Python

ASC, National Centre for Physics

Keyword Arguments
If we have some functions with many
parameters and we want to specify only some
parameters, then we can give values for such
parameters by naming them.
i.e., this is called keyword arguments. We use
the name instead of the position which we
have been using all along.
This has two advantages:
 Using the function is easier since we do not need

to worry about the order of the arguments.

 We can give values to only those parameters
which we want, provided that the other
parameters have default argument values.

Programming Python

ASC, National Centre for Physics

Using Keyword Arguments

Demonstrating Keyword Arguments
def func(a, b=5, c=10):
 print 'a is', a, 'and b is', b, 'and c is', c
func(3, 7)
func(25, c=24)
func(c=50, a=100)

Programming Python

ASC, National Centre for Physics

Lambda Forms

Python supports an interesting syntax
that lets you define one-line mini-
functions on the fly.

Borrowed from Lisp, these so-called
lambda functions can be used anywhere
a function is required.

Have a look at an example:

Programming Python

ASC, National Centre for Physics

Using Lambda Functions
>>> def f(x):
... return x*2
...
>>> f(3)
6
>>> g = lambda x: x*2
>>> g(3)
6
>>> (lambda x: x*2)(3)
6
>>> def f(n):
…return lambda x: x+n
>>> v = f(3)
>>> v(10)
13

Programming Python

ASC, National Centre for Physics

Using Lambda Functions
This is a lambda function that accomplishes
the same thing as the normal function above
it.
Note the abbreviated syntax here:
 there are no parentheses around the argument list
 and the return keyword is missing (it is implied,

since the entire function can only be one
expression).

 Also, the function has no name
 But it can be called through the variable it is

assigned to.

Programming Python

ASC, National Centre for Physics

Using Lambda Functions
We can use a lambda function without even
assigning it to a variable.
It just goes to show that a lambda is just an in-line
function.
To generalize, a lambda function is a function that:
 takes any number of arguments and returns the

value of a single expression
 lambda functions can not contain commands
 and they can not contain more than one

expression.
 Don't try to squeeze too much into a lambda

function; if needed something more complex,
define a normal function instead and make it as
long as wanted.

Programming Python

ASC, National Centre for Physics

Documentation Strings

Python has a nifty feature called
documentation strings which are usually
referred to by their shorter name docstrings.

DocStrings are an important tool that we
should make use of since it helps to
document the program better.

We can even get back the docstring from a
function at runtime i.e. when the program is
running.

Programming Python

ASC, National Centre for Physics

Using Documentation Strings
def printMax(x, y):

'''Prints the maximum of the two numbers.

The two values must be integers. If they are floating

point numbers, then they are converted to
integers.'''

x = int(x) # Convert to integers, if possible
y = int(y)
if x > y:

print x, 'is maximum'

else:
print y, 'is maximum'

printMax(3, 5)
print printMax.__doc__

Programming Python

ASC, National Centre for Physics

Using Documentation Strings

A string on the first logical line of a function is a
docstring for that function.
The convention followed for a docstring is a multi-line
string where the first line starts with a capital letter
and ends with a dot.
Then the second line is blank followed by any
detailed explanation starting from the third line.
It is strongly advised to follow such a convention for
all our docstrings for all our functions.
We access the docstring of the printMax function
using the __doc__ attribute of that function.

ASC, National Centre for Physics

More on Lists…

Important Built-in Functions of Lists

Using Lists as Stacks and Queues

The del Statement

Programming Python

ASC, National Centre for Physics

List’s Important Built-in Functions

Here are some important functions of lists:
 append(x)

 Add an item to the end of the list

 extend(L)
 Extend the list by appending all the items in the given list

 insert(i, x)
 Insert an item at a given position.
 The first argument is the index of the element before which to

insert,
 so a.insert(0, x) inserts at the front of the list,
 and a.insert(len(a), x) is equivalent to a.append(x).

 remove(x)
 Remove the first item from the list whose value is x.
 It is an error if there is no such item.

Programming Python

ASC, National Centre for Physics

List’s Important Built-in Functions

 pop([i])
 Remove the item at the given position in the list, and

return it.

 If no index is specified, a.pop() returns the last item in
the list. The item is also removed from the list.

 (The square brackets around the i in the method
signature denote that the parameter is optional, not that
we should not type square brackets at that position.)

 index(x)
 Return the index in the list of the first item whose value

is x.

 It is an error if there is no such item.

Programming Python

ASC, National Centre for Physics

List’s Important Built-in Functions

 count(x)

 Return the number of times x appears in the
list.

 sort()

 Sort the items of the list, in place.

 reverse()

 Reverse the elements of the list, in place.

Programming Python

ASC, National Centre for Physics

List’s Important Built-in Functions

>>> a = [66.6, 333, 333, 1, 1234.5]

>>> print a.count(333), a.count(66.6), a.count(’x’)

2 1 0

>>> a.insert(2, -1)

>>> a.append(333)

>>> a

[66.6, 333, -1, 333, 1, 1234.5, 333]

>>> a.index(333)

1

Programming Python

ASC, National Centre for Physics

List’s Important Built-in Functions

>>> a.remove(333)

>>> a

[66.6, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.6]

>>> a.sort()

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]

Programming Python

ASC, National Centre for Physics

Using Lists as Stacks

The list methods make it very easy to use a list as a
stack, where the last element added is the first
element retrieved i.e., (“last-in, first-out”).

To add an item to the top of the stack, use append().

To retrieve an item from the top of the stack, use
pop() without an explicit index.

For example:

 >>> stack = [3, 4, 5]

 >>> stack.append(6)

 >>> stack.append(7)

Programming Python

ASC, National Centre for Physics

Using Lists as Stacks
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

Programming Python

ASC, National Centre for Physics

Using Lists as Queues

We can also use a list conveniently as a queue,
where the first element added is the first
element retrieved i.e., (“first-in, first-out”).

To add an item to the back of the queue, use
append().

To retrieve an item from the front of the queue,
use pop() with 0 as the index.

For example:

 >>> queue = ["Eric", "John", "Michael"]

Programming Python

ASC, National Centre for Physics

Using Lists as Queues

>>> queue.append("Terry") # Terry arrives

>>> queue.append("Graham") # Graham arrives

>>> queue.pop(0)

’Eric’

>>> queue.pop(0)

’John’

>>> queue

[’Michael’, ’Terry’, ’Graham’]

Programming Python

ASC, National Centre for Physics

The del Statement
There is a way to remove an item from a list
given its index instead of its value:
 i.e., the del statement.

This can also be used to remove slices from a
list (which we did earlier by assignment of an
empty list to the slice).
For example:

 >>> a = [-1, 1, 66.6, 333, 333, 1234.5]
 >>> del a[0]
 >>> a
 [1, 66.6, 333, 333, 1234.5]

Programming Python

ASC, National Centre for Physics

The del Statement

 >>> del a[2:4]

 >>> a

 [1, 66.6, 1234.5]

del can also be used to delete entire
variables:

 >>> del a

Referencing the name a hereafter is an error
(at least until another value is assigned to it).

Programming Python

ASC, National Centre for Physics

Comparing Data Structures
Sequence objects may be compared to other objects with the
same sequence type.
The comparison uses lexicographical ordering:
 first the first two items are compared, and

 if they differ this determines the outcome of the comparison;
 if they are equal, the next two items are compared, and so on, until either

sequence is exhausted.

If two items to be compared are themselves sequences of the
same type, the lexicographical comparison is carried out
recursively.
If all items of two sequences compare equal, the sequences are
considered equal.
If one sequence is an initial sub-sequence of the other, the
shorter sequence is the smaller (lesser) one.
Lexicographical ordering for strings uses the ASCII ordering for
individual characters.

Programming Python

ASC, National Centre for Physics

Comparing Data Structures
Some examples of comparisons between sequences
with the same types:

 (1, 2, 3) < (1, 2, 4)
 [1, 2, 3] < [1, 2, 4]
 ’ABC’ < ’C’ < ’Pascal’ < ’Python’
 (1, 2, 3, 4) < (1, 2, 4)
 (1, 2) < (1, 2, -1)
 (1, 2, 3) == (1.0, 2.0, 3.0)
 (1, 2, (’aa’, ’ab’)) < (1, 2, (’abc’, ’a’), 4)

Note that comparing objects of different types is legal.
The outcome is deterministic but arbitrary: the types are
ordered by their name.
 Thus, a list is always smaller than a string
 A string is always smaller than a tuple, etc.

Mixed numeric types are compared according to their numeric
value, so 0 equals 0.0, etc.

Programming Python

ASC, National Centre for Physics

Packages
Packages are a way of structuring Python’s module namespace
by using “dotted module names”.
For example, the module name A.B designates a submodule
named ‘B’ in a package named ‘A’.
Just like the use of modules saves the authors of different
modules from having to worry about each other’s global variable
names, the use of dotted module names saves the authors of
multi-module packages like NumPy or the Python Imaging
Library from having to worry about each other’s module names.
Suppose we want to design a collection of modules (a
“package”) for the uniform handling of sound files and sound
data.
There are many different sound file formats usually recognized
by their extensions. For example:
‘.wav’, ‘.aiff’, ‘.au’, so we may need to create and maintain a
growing collection of modules for the conversion between the
various file formats.

Programming Python

ASC, National Centre for Physics

Packages
There are also many different operations we might want
to perform on sound data:
 Mixing
 Adding echo
 Applying an equalizer function
 Creating an artificial stereo effect,

We will be writing a never-ending stream of modules to
perform these operations.
Here’s a possible structure for our package (expressed in
terms of a hierarchical filesystem):

Programming Python

ASC, National Centre for Physics

Packages

Sound/ Top-level package

 Formats/ Subpackage for file format conversions

 wavread.py
 wavwrite.py
 aiffread.py
 aiffwrite.py
 auread.py
 auwrite.py
 ...

 Effects/ Subpackage for sound effects
 echo.py
 surround.py
 reverse.py
 ...

Programming Python

ASC, National Centre for Physics

Packages

 Filters/ Subpackage for filters
 equalizer.py

 vocoder.py

 karaoke.py

 ...

When importing the package, Python
searches through the directories on
sys.path looking for the package
subdirectory.

Programming Python

ASC, National Centre for Physics

Packages

Users of the package can import individual
modules from the package, for example:
import Sound.Effects.echo
This loads the submodule Sound.Effects.echo.
It must be referenced with its full name.
 Sound.Effects.echo.echofilter(input, output,

delay=0.7, atten=4)

An alternative way of importing the
submodule is:
 from Sound.Effects import echo

Programming Python

ASC, National Centre for Physics

Packages

This also loads the submodule echo, and makes it
available without its package prefix, so it can be used
as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function
or variable directly:
 from Sound.Effects.echo import echofilter

Again, this loads the submodule echo, but this makes
its function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Programming Python

ASC, National Centre for Physics

Packages
Note that when using from package import item, the
item can be either a submodule (or subpackage) of
the package, or some other name defined in the
package, like a function, class or variable.

The import statement first tests whether the item is
defined in the package; if not, it assumes it is a
module and attempts to load it.

If it fails to find it, an ImportError exception is raised.

Contrarily, when using syntax like import
item.subitem.subsubitem, each item except for the
last must be a package; the last item can be a
module or a package but can’t be a class or function
or variable defined in the previous item.

Programming Python

ASC, National Centre for Physics

Intra-Package References

The submodules often need to refer to each other.
For example, the surround module might use the echo
module.
In fact, such references are so common that the
import statement first looks in the containing package
before looking in the standard module search path.
Thus, the surround module can simply use import echo
or from echo import echofilter.
If the imported module is not found in the current
package (the package of which the current module is a
submodule), the import statement looks for a top-level
module with the given name.

Programming Python

ASC, National Centre for Physics

Intra-Package References

When packages are structured into
subpackages (as with the Sound package in
the example), there’s no shortcut to refer to
submodules of sibling packages - the full
name of the subpackage must be used.

For example, if the module
Sound.Filters.vocoder needs to use the echo
module in the Sound.Effects package, it can
use from Sound.Effects import echo.

Programming Python

ASC, National Centre for Physics

Packages in Multiple Directories

Packages support one more special attribute,
__path__.

This is initialized to be a list containing the name of
the directory holding the package’s ‘__init__.py’
before the code in that file is executed.

This variable can be modified;
 doing so affects future searches for modules and

subpackages contained in the package.

While this feature is not often needed, it can be used
to extend the set of modules found in a package.

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

There are several ways to present the output
of a program;
 data can be printed in a human-readable form
 or written to a file for future use.

So far we’ve encountered two ways of writing
values: expression statements and the print
statement.
A third way is using the write() method of file
objects;
 the standard output file can be referenced as

sys.stdout.

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

Often we’ll want more control over the formatting of
our output than simply printing space-separated
values.
There are two ways to format our output;
 the first way is to do all the string handling ourselves; using

string slicing and concatenation operations we can create
any lay-out we can imagine. The standard module string
contains some useful operations for padding strings to a
given column width.

 The second way is to use the % operator with a string as
the left argument. The % operator interprets the left
argument much like a sprintf()-style format string to be
applied to the right argument, and returns the string
resulting from this formatting operation.

Programming Python

ASC, National Centre for Physics

Formatting Input and Output
Python has ways to convert any value to a string:
 pass it to the repr() or str() functions.
 Reverse quotes (“) are equivalent to repr(), but their use is

discouraged.
 The str() function is meant to return representations of values

which are fairly human-readable, while repr() is meant to
generate representations which can be read by the interpreter
(or will force a SyntaxError if there is not equivalent syntax).

 For objects which don’t have a particular representation for
human consumption, str() will return the same value as repr().

 Many values, such as numbers or structures like lists and
dictionaries, have the same representation using either
function.

 Strings and floating point numbers, in particular, have two
distinct representations.

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

>>> s = ’Hello, world.’

>>> str(s)

’Hello, world.’

>>> repr(s)

"’Hello, world.’"

>>> str(0.1)

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

’0.1’

>>> repr(0.1)

’0.10000000000000001’

>>> x = 10 * 3.25

>>> y = 200 * 200

>>> s = ’The value of x is ’ + repr(x) + ’,
 and y is ’ + repr(y) + ’...’

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

>>> print s

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string
 quotes and backslashes:

... hello = ’hello, world\n’

>>> hellos = repr(hello)

>>> print hellos

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

’hello, world\n’

>>> # The argument to repr() may be any
 Python object:

... repr((x, y, (’spam’, ’eggs’)))

"(32.5, 40000, (’spam’, ’eggs’))"

>>> # reverse quotes are convenient in
interactive sessions:

... ‘x, y, (’spam’, ’eggs’)‘

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

"(32.5, 40000, (’spam’, ’eggs’))"

Here are two ways to write a table of
squares and cubes:

>>> import string

>>> for x in range(1, 11):

 print string.rjust(repr(x), 2),
 string.rjust(repr(x*x), 3),

 # Note trailing comma on previous line

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

print string.rjust(repr(x*x*x), 4)

1 1 1

2 4 8

3 9 27

4 16 64

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

>>> for x in range(1,11)

print ’%2d %3d %4d’ % (x, x*x, x*x*x)

 1 1 1

 2 4 8

 3 9 27

 4 16 64

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

 5 25 125

 6 36 216

 7 49 343

 8 64 512

 9 81 729

 10 100 1000

Programming Python

ASC, National Centre for Physics

Formatting Input and Output
Note that one space between each column was added
by the way print works:
 it always adds spaces between its arguments.

This example demonstrates the function:
 string.rjust(), which right-justifies a string in a field of a given

width by padding it with spaces on the left.
 There are similar functions string.ljust() and string.center().
 These functions do not write anything, they just return a new

string.
 If the input string is too long, they don’t truncate it, but return

it unchanged; this will mess up our column lay-out but that’s
usually better than the alternative, which would be lying about
a value.

 (If we really want truncation, we can always add a slice
operation, as in ‘string.ljust(x, n)[0:n]’.)

Programming Python

ASC, National Centre for Physics

Formatting Input and Output
There is another function, string.zfill(), which
pads a numeric string on the left with zeros.

It understands about plus and minus signs:

>>> import string

>>> string.zfill(’12’, 5)

’00012’

>>> string.zfill(’-3.14’, 7)

’-003.14’

>>> string.zfill(’3.14159265359’, 5)

’3.14159265359’

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

Using the % operator looks like this:

>>> import math

>>> print ’The value of PI is approximately
 %5.3f.’ % math.pi

The value of PI is approximately 3.142.

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

Most formats work exactly as in C and
require that you pass the proper type;
however, if you don’t you get an
exception, not a core dump.

The %s format is more relaxed:

 if the corresponding argument is not a string
object, it is converted to string using the
str() built-in function.

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

If we have a really long format string that
we don’t want to split up,

 it would be nice if we could reference the
variables to be formatted by name instead of
by position.

Programming Python

ASC, National Centre for Physics

Formatting Input and Output

This can be done by using form %(name)
format, as shown here:

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098,
’Dcab’: 8637678}

>>> print ’Jack: %(Jack)d; Sjoerd:
%(Sjoerd)d; Dcab: %(Dcab)d’ % table

Jack: 4098; Sjoerd: 4127; Dcab: 8637678

Programming Python

ASC, National Centre for Physics

Reading and Writing Files

We can open and use files for reading
or writing by:
 first creating an object of the file class

 then we use the read, readline, or write
methods of the file object to read from or
write to the file depending on which mode
you opened the file in

 then finally, when we are finished the file,
we call the close method of the file object.

Programming Python

ASC, National Centre for Physics

Reading and Writing Files

In the open function,
 the first argument is a string containing the filename.
 The second argument is another string containing a few

characters describing the way in which the file will be used.

mode can be ’r’ when the file will only be read,
’w’ for only writing (an existing file with the same
name will be erased), and ’a’ opens the file for
appending;
any data written to the file is automatically added to
the end. ’r+’ opens the file for both reading and
writing.
The mode argument is optional; ’r’ will be assumed if
it’s omitted.

Programming Python

ASC, National Centre for Physics

Reading and Writing Files
poem = '''\
Programming is fun
When the work is done
if (you wanna make your work also fun):
use Python!
'''
f = file('poem.txt', 'w')
f.write(poem)
f.close()
f = file('poem.txt') # the file is opened in 'r'ead mode by default
while True:
 line = f.readline()
 if len(line) == 0: # Length 0 indicates EOF
 break
 print line, # So that extra newline is not added
f.close()

Programming Python

ASC, National Centre for Physics

Reading and Writing Files

f.tell() returns an integer giving the file object’s
current position in the file, measured in bytes from
the beginning of the file.
To change the file object’s position,
 use ‘f.seek(offset, from_what)’.

The position is computed from adding offset to a
reference point;
 the reference point is selected by the from_what argument.

A from_what value of 0 measures from the beginning
of the file,
 1 uses the current file position,
 2 uses the end of the file as the reference point.
 from_what can be omitted and defaults to 0, using the

beginning of the file as the reference point.

Programming Python

ASC, National Centre for Physics

Reading and Writing Files

>>> f=open(’/tmp/workfile’, ’r+’)

>>> f.write(’0123456789abcdef’)

>>> f.seek(5) # Go to the 6th byte in
 the file

>>> f.read(1)

’5’

>>> f.seek(-3, 2) # Go to the 3rd byte
before the end

Programming Python

ASC, National Centre for Physics

Reading and Writing Files

>>> f.read(1)

’d’

When we’re done with a file,
 call f.close() to close it and free up any system

resources taken up by the open file.

 After calling f.close(), attempts to use the file
object will automatically fail.

>>> f.close()

>>> f.read()

Programming Python

ASC, National Centre for Physics

Reading and Writing Files

Traceback (most recent call last):

File "<stdin>", line 1, in ?

ValueError: I/O operation on closed file

Programming Python

ASC, National Centre for Physics

pickle Module

Strings can easily be written to and read from a file.
Numbers take a bit more effort, since the read()
method only returns strings, which will have to be
passed to a function like string.atoi(), which takes a
string like ’123’ and returns its numeric value 123.
However, when we want to save more complex data
types like lists, dictionaries, or class instances, things
get a lot more complicated.
Rather than have users be constantly writing and
debugging code to save complicated data types,
Python provides a standard module called pickle.

Programming Python

ASC, National Centre for Physics

pickle Module

This is an amazing module that can take almost any
Python object (even some forms of Python code!),
and convert it to a string representation; this process
is called pickling. Reconstructing the
object from the string representation is called
unpickling. Between pickling and unpickling, the
string representing the object may have been stored
in a file or data, or sent over a network connection to
some distant machine.
If you have an object ‘x’, and a file object ‘f’ that’s
been opened for writing, the simplest way to pickle
the object takes only one line of code:

Programming Python

ASC, National Centre for Physics

pickle Module

pickle.dump(x, f)

To unpickle the object again, if ‘f’ is a file
object which has been opened for reading:

x = pickle.load(f)

(There are other variants of this, used when
pickling many objects or when we don’t want

to write the pickled data to a file.

Programming Python

ASC, National Centre for Physics

pickle Module

pickle is the standard way to make Python
objects which can be stored and reused by
other programs or by a future invocation of
the same program; the technical term for this
is a persistent object.
Because pickle is so widely used, many
authors who write Python extensions take
care to ensure that new data types such as
matrices can be properly pickled and
unpickled.

Programming Python

ASC, National Centre for Physics

Using pickle module

import cPickle
shoplistfile = 'shoplist.data' # The name of the file
we will use
shoplist = ['apple', 'mango', 'carrot'] # Write to the
storage
f = file(shoplistfile, 'w')
cPickle.dump(shoplist, f) # dump the data to the file
f.close()
del shoplist # Remove shoplist
Read back from storage
f = file(shoplistfile)
storedlist = cPickle.load(f) print storedlist

