
ASC, National Centre for Physics

Programming Python – Lecture#3

Mr. Adeel-ur-Rehman

Programming Python

ASC, National Centre for Physics

Scheme of Lecture

Object-Oriented Framework

Python Scopes and Namespaces

The self argument

The __init__ method

Classes

The __getitem__ and __setitem__ methods

Inheritance and Multiple Inheritance

Iterators and Generators

Exception Handling

Gui Tkinter Programming Basics

Programming Python

ASC, National Centre for Physics

Object-Oriented Framework

Two basic programming paradigms:

 Procedural

Organizing programs around functions or
blocks of statements which manipulate data.

 Object-Oriented

 combining data and functionality and wrap it
inside what is called an object.

Programming Python

ASC, National Centre for Physics

Object-Oriented Framework

Classes and objects are the two main aspects
of object oriented programming.

A class creates a new type.

Where objects are instances of the class.

An analogy is that we can have variables of
type int which translates to saying that
variables that store integers are variables
which are instances (objects) of the int class.

Programming Python

ASC, National Centre for Physics

Object-Oriented Framework

Objects can store data using ordinary
variables that belong to the object.
Variables that belong to an object or class are
called as fields.
Objects can also have functionality by using
functions that belong to the class. Such
functions are called methods.
This terminology is important because it helps
us to differentiate between a function which
is separate by itself and a method which
belongs to an object.

Programming Python

ASC, National Centre for Physics

Object-Oriented Framework

Remember, that fields are of two types

 they can belong to each instance (object) of the
class

 or they belong to the class itself.

 They are called instance variables and class
variables respectively.

A class is created using the class keyword.

The fields and methods of the class are listed
in an indented block.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

A namespace is a mapping from names to
objects.

Most namespaces are currently implemented
as Python dictionaries, but that’s normally not
noticeable in any way.

Examples of namespaces are:
 the set of built-in names (functions such as abs(),

and built-in exception names)

 the global names in a module;

 and the local names in a function invocation.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

 In a sense the set of attributes of an object also
form a namespace.

The important thing to know about
namespaces is that there is absolutely no
relation between names in different
namespaces;
 for instance, two different modules may both

define a function “maximize” without confusion —
users of the modules must prefix it with the
module name.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

In the expression modname.funcname,
modname is a module object and
funcname is an attribute of it.

In this case there happens to be a
straightforward mapping between the
module’s attributes and the global
names defined in the module:

 they share the same namespace!

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

Namespaces are created at different
moments and have different lifetimes.

The namespace containing the built-in names
is created when the Python interpreter starts
up, and is never deleted.

The global namespace for a module is
created when the module definition is read
in;
 normally, module namespaces also last until the

interpreter quits.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

The statements executed by the top-
level invocation of the interpreter,
either read from a script file or
interactively, are considered part of a
module called __main__,

 so they have their own global namespace.

The built-in names actually also live in a
module;

 this is called __builtin__.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

The local namespace for a function is
created

 when the function is called

And deleted

 when the function returns or raises an
exception that is not handled within the
function.

 Of course, recursive invocations each have
their own local namespace.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

A scope is a textual region of a Python
program where a namespace is directly
accessible.

“Directly accessible” here means that an
unqualified reference to a name
attempts to find the name in the
namespace.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

Although scopes are determined
statically, they are used dynamically.

At any time during execution, there are
at least three nested scopes whose
namespaces are directly accessible:

 the innermost scope, which is searched
first, contains the local names; the
namespaces of any enclosing functions,

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

 which are searched starting with the
nearest enclosing scope; the middle scope,
searched next, contains the current
module’s global names;

 and the outermost scope (searched last) is
the namespace containing built-in names.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

If a name is declared global, then all
references and assignments go directly
to the middle scope containing the
module’s global names.

Otherwise, all variables found outside of
the innermost scope are read-only.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

Usually, the local scope references the
local names of the current function.

Outside of functions, the local scope
references the same namespace as the
global scope:

 the module’s namespace.

Class definitions place yet another
namespace in the local scope.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

A special quirk of Python is that
assignments always go into the
innermost scope.

Assignments do not copy data—

 they just bind names to objects.

The same is true for deletions:

 the statement ‘del x’ removes the binding
of x from the namespace referenced by the
local scope.

Programming Python

ASC, National Centre for Physics

Python Scopes and Namespaces

In fact, all operations that introduce
new names use the local scope:

 in particular, import statements and
function definitions bind the module or
function name in the local scope. (The
global statement can be used to indicate
that particular variables live in the global
scope.)

Programming Python

ASC, National Centre for Physics

The self

Class methods have only one specific
difference from ordinary functions

 they have an extra variable that has to be added
to the beginning of the parameter list

 but we do not give a value for this parameter
when we call the method.

 this particular variable refers to the object itself,

 and by convention, it is given the name self.

Programming Python

ASC, National Centre for Physics

The self

Although, we can give any name for this
parameter, it is strongly recommended that
we use the name self.

Any other name is definitely frowned upon.

There are many advantages to using a
standard name
 any reader of our program will immediately

recognize that it is the object variable i.e. the self
and even specialized IDEs (Integrated
Development Environments such as Boa
Constructor) can help us if we use this particular
name.

Programming Python

ASC, National Centre for Physics

The self

Python will automatically provide this value in
the function parameter list.

For example, if we have a class called
MyClass and an instance (object) of this
class called MyObject, then when we call a
method of this object as
MyObject.method(arg1, arg2), this is
automatically converted to
MyClass.method(MyObject, arg1, arg2).

This is what the special self is all about.

Programming Python

ASC, National Centre for Physics

The __init__ method

__init__ is called immediately after an
instance of the class is created.

It would be tempting but incorrect to call this
the constructor of the class.
 Tempting, because it looks like a constructor (by

convention, __init__ is the first method defined for
the class), acts like one (it's the first piece of code
executed in a newly created instance of the class),
and even sounds like one ("init" certainly suggests
a constructor-ish nature).

Programming Python

ASC, National Centre for Physics

The __init__ method

 Incorrect, because the object has already
been constructed by the time __init__ is
called, and we already have a valid
reference to the new instance of the class.

But __init__ is the closest thing we're
going to get in Python to a constructor,
and it fills much the same role.

Programming Python

ASC, National Centre for Physics

Creating a Class

class Person:

pass # A new block

p = Person()

print p

#<__main__.Person instance at 0x816a6cc>

Programming Python

ASC, National Centre for Physics

Object Methods

class Person:

def sayHi(self):

print 'Hello, how are you?'

p = Person()

p.sayHi()

This short example can also be
#written as Person().sayHi()

Programming Python

ASC, National Centre for Physics

Class and Object Variables
class Person:

'''Represents a person.'''

population = 0

def __init__(self, name):
'''Initializes the person.'''

self.name = name

print '(Initializing %s)' % self.name

When this person is created, # he/she adds to the population

Person.population += 1

def sayHi(self):
'''Greets the other person. Really, that's all it does.'''

print 'Hi, my name is %s.' % self.name

Programming Python

ASC, National Centre for Physics

Class and Object Variables
def howMany(self):

'''Prints the current population.''‘
 # There will always be at least one person
if Person.population == 1:

print 'I am the only person here.'

else:
print 'We have %s persons here.' % Person.population

swaroop = Person('Swaroop')
swaroop.sayHi()
swaroop.howMany()
kalam = Person('Abdul Kalam')
kalam.sayHi()
kalam.howMany()
swaroop.sayHi()
swaroop.howMany()

Programming Python

ASC, National Centre for Physics

Special Class Methods

In addition to normal class methods, there
are a number of special methods which
Python classes can define.

Instead of being called directly by our code
(like normal methods), special methods are
called for you by Python in particular
circumstances or when specific syntax is
used.

We can get and set items with a syntax that
doesn't include explicitly invoking methods.

Programming Python

ASC, National Centre for Physics

The __getitem__ Special Method

def __getitem__(self, key): return self.data[key]
>>> f
{'name':'/music/_singles/kairo.mp3'}
>>> f.__getitem__("name")
'/music/_singles/kairo.mp3'
>>> f["name"] (2)
'/music/_singles/kairo.mp3'

The __getitem__ special method looks simple
enough. Like the normal methods clear, keys,
and values, it just redirects to the dictionary to
return its value. But how does it get called?

Programming Python

ASC, National Centre for Physics

The __getitem__ Special Method

Well, we can call __getitem__ directly, but in practice
we wouldn't actually do that;
The right way to use __getitem__ is to get Python to
call it for us.
This looks just like the syntax we would use to get a
dictionary value, and in fact it returns the value we
would expect.
But here's the missing link: under the covers, Python
has converted this syntax to the method call:
 f.__getitem__("name").

That's why __getitem__ is a special class method;
not only can we call it ourself, we can get Python to
call it for us by using the right syntax.

Programming Python

ASC, National Centre for Physics

The __setitem__ Special Method

def __setitem__(self, key, item):self.data[key] = item

>>> f

{'name':'/music/_singles/kairo.mp3'}

>>> f.__setitem__("genre", 31)

>>> f

{'name':'/music/_singles/kairo.mp3', 'genre':31}

>>> f["genre"] = 32

>>> f

{'name':'/music/_singles/kairo.mp3', 'genre':32}

Programming Python

ASC, National Centre for Physics

The __setitem__ Special Method

Like the __getitem__ method, __setitem__ simply
redirects to the real dictionary self.data to do its work.
And like __getitem__, we wouldn't ordinarily call it
directly like this.
Python calls __setitem__ for us when we use the right
syntax.
This looks like regular dictionary syntax, except of
course that f is really a class that's trying very hard to
masquerade as a dictionary, and __setitem__ is an
essential part of that masquerade.
This second last line of code actually calls
f.__setitem__("genre", 32) under the covers.

Programming Python

ASC, National Centre for Physics

Inheritance

One of the major benefits of object
oriented programming is reuse of code

One of the ways this is achieved is
through the inheritance mechanism.

Inheritance can be best imagined as
implementing a type and subtype
relationship between classes.

Consider this example:

Programming Python

ASC, National Centre for Physics

Using Inheritance

class SchoolMember:

'''Represents any school member.'''

def __init__(self, name, age):

self.name = name

self.age = age

print '(Initialized SchoolMember: %s)' %
self.name

def tell(self):

print 'Name:"%s" Age:"%s" ' % (self.name,
self.age),

Programming Python

ASC, National Centre for Physics

Using Inheritance

class Teacher(SchoolMember):

'''Represents a teacher.'''
def __init__(self, name, age, salary):

SchoolMember.__init__(self, name, age)

self.salary = salary

print '(Initialized Teacher: %s)' % self.name

def tell(self):
SchoolMember.tell(self)

print 'Salary:"%d"' % self.salary

Programming Python

ASC, National Centre for Physics

Using Inheritance

class Student(SchoolMember):

'''Represents a student.'''
def __init__(self, name, age, marks):

SchoolMember.__init__(self, name, age)

self.marks = marks

print '(Initialized Student: %s)' % self.name

def tell(self):
SchoolMember.tell(self)

print 'Marks:"%d"' % self.marks

Programming Python

ASC, National Centre for Physics

Using Inheritance

t = Teacher('Mrs. Abraham', 40, 30000)

s = Student('Swaroop', 21, 75)

print # prints a blank line

members = [t, s]

for member in members:

member.tell() # Works for instances of
Student as well as Teacher

Programming Python

ASC, National Centre for Physics

Multiple Inheritance
Python supports a limited form of multiple
inheritance as well.

A class definition with multiple base classes
looks as follows:

class DerivedClassName(Base1, Base2, Base3):

<statement-1>

.

<statement-N>

The only rule necessary to explain the
semantics is the resolution rule used for class
attribute references.

Programming Python

ASC, National Centre for Physics

Multiple Inheritance

This is depth-first, left-to-right. Thus, if an attribute is
not found in DerivedClassName, it is searched in
Base1, then (recursively) in the base classes of
Base1, and only if it is not found there, it is searched
in Base2, and so on.

A well-known problem with multiple inheritance is a
class derived from two classes that happen to have a
common base class. While it is easy enough to figure
out what happens in this case (the instance will have
a single copy of “instance variables” or data
attributes used by the common base class).

Programming Python

ASC, National Centre for Physics

Iterators

By now, you’ve probably noticed that
most container objects can looped over
using a for statement:
for element in [1, 2, 3]:

print element

for element in (1, 2, 3):
print element

for key in {’one’:1, ’two’:2}:
print key

Programming Python

ASC, National Centre for Physics

Iterators
for char in "123":

print char
for line in open("myfile.txt"):

print line

This style of access is clear, concise, and convenient.
The use of iterators pervades and unifies Python.
Behind the scenes, the for statement calls iter() on
the container object.
The function returns an iterator object that defines
the method next() which accesses elements in the
container one at a time.
When there are no more elements, next() raises a
StopIteration exception which tells the for loop to
terminate.
This example shows how it all works:

Programming Python

ASC, National Centre for Physics

Iterators

>>> s = ’abc’

>>> it = iter(s)

>>> it

<iterator object at 0x00A1DB50>

>>> it.next()

’a’

>>> it.next()

’b’

Programming Python

ASC, National Centre for Physics

Iterators

>>> it.next()

’c’

>>> it.next()

Traceback (most recent call last):

File "<pyshell#6>", line 1, in -toplevel

 it.next()

StopIteration

Programming Python

ASC, National Centre for Physics

Iterators

Having seen the mechanics behind the
iterator protocol, it is easy to add
iterator behavior to our classes.

Define a __iter__() method which
returns an object with a next() method.

If the class defines next(), then
__iter__() can just return self:

Programming Python

ASC, National Centre for Physics

Iterators

>>> class Reverse:

"Iterator for looping over a sequence
backwards"

def __init__(self, data):

 self.data = data

 self.index = len(data)

def __iter__(self):

 return self

Programming Python

ASC, National Centre for Physics

Iterators

def next(self):

 if self.index == 0:

 raise StopIteration

 self.index = self.index - 1

 return self.data[self.index]

Programming Python

ASC, National Centre for Physics

Iterators

>>> for char in Reverse(’spam’):

print char

m

a

p

s

Programming Python

ASC, National Centre for Physics

Generators

Generators are a simple and powerful tool for
creating iterators.
They are written like regular functions but
use the yield statement whenever they want
to return data.
Each time the next() is called, the generator
resumes where it left-off (it remembers all
the data values and which statement was last
executed).
An example shows that generators can be
trivially easy to create:

Programming Python

ASC, National Centre for Physics

Generators

>>> def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]
>>> for char in reverse(’golf’):
print char
f
l
o
g

Programming Python

ASC, National Centre for Physics

Generators

Anything that can be done with generators can also
be done with class based iterators as described in the
previous section.
What makes generators so compact is that the
__iter__() and next() methods are created
automatically.
Another key feature is that the local variables and
execution state are automatically saved between
calls.
This made the function easier to write and much
more clear than an approach using class variables
like self.index and self.data.

Programming Python

ASC, National Centre for Physics

Generators

In addition to automatic method
creation and saving program state,
when generators terminate, they
automatically raise StopIteration.

In combination, these features make it
easy to create iterators with no more
effort than writing a regular function.

Programming Python

ASC, National Centre for Physics

Exception Handling

Exceptions occur when certain exceptional
situations occur in our program.
For example, what if we are reading a file
and we accidentally deleted it in another
window or some other error occurred? Such
situations are handled using exceptions.
What if our program had some invalid
statements?
This is handled by Python which raises its
hands and tells you there is an error.

Programming Python

ASC, National Centre for Physics

Exception Handling
Consider a simple print statement.
What if we misspelt print as Print?
Note the capitalization.

In this case, Python raises a syntax error.

 >>> Print 'Hello, World' File "<stdin>", line 1 Print
'Hello, World' ^ SyntaxError: invalid syntax

 >>> print 'Hello, World'
 Hello, World
 >>>

Observe that a SyntaxError is raised and also the
location where the error was detected, is printed.
This is what a handler for the error does.

Programming Python

ASC, National Centre for Physics

Exception Handling
To show the usage of exceptions, we will try to read
input from the user and see what happens.

>>> s = raw_input('Enter something --> ')

Enter something --> Traceback (most recent call
last): File "<stdin>", line 1, in ? EOFError

>>>

Here, we ask the user for input and if he/she presses
Ctrl-d i.e. the EOF (end of file) character, then
Python raises an error called EOFError.

Next, we will see how to handle such errors.

Programming Python

ASC, National Centre for Physics

Exception Handling

We can handle exceptions using the
try..except statement.

We basically put our usual statements
within the try-block.

And we put all the error handlers in the
except-block.

Programming Python

ASC, National Centre for Physics

Exception Handling

import sys

try:

s = raw_input('Enter something --> ')

except EOFError:

print '\nWhy did you do an EOF on me?' sys.exit() #
Exit the program

except:

print '\nSome error/exception occurred.'

Here, we are not exiting the program

print 'Done'

Programming Python

ASC, National Centre for Physics

Exception Handling
We put all the statements that might raise an error in
the try block

And then handle all errors and exceptions in the
except clause/block.

The except clause can handle a single specified error
or exception or a parenthesized list of
errors/exceptions.

If no names of errors or exceptions are supplied, it
will handle all errors and exceptions. There has to be
at least one except clause associated with every try
clause.

Programming Python

ASC, National Centre for Physics

Exception Handling

If any error or exception is not handled,
then the default Python handler is
called which stops the execution of the
program and prints a message.

We can also have an else clause with
the try..catch block.

The else clause is executed if no
exception occurs.

Programming Python

ASC, National Centre for Physics

Exception Handling

We can also get the exception object
so that we can retrieve additional
information about the exception which
has occurred.

This is demonstrated in the next
example.

Programming Python

ASC, National Centre for Physics

Exception Handling

We can raise exceptions using the raise
statement

 - we specify the name of the
error/exception and the exception object.

 The error or exception that we can raise
should be a class which directly or
indirectly is a derived class of the Error or
Exception class respectively.

Programming Python

ASC, National Centre for Physics

Exception Handling

class ShortInputException(Exception):

 '''A user-defined exception class.'''

 def __init__(self, length, atleast):

 self.length = length

 self.atleast = atleast

try:

 s = raw_input('Enter something --> ')

 if len(s) < 3:

 raise ShortInputException(len(s), 3)

Programming Python

ASC, National Centre for Physics

Exception Handling

Other work can go as usual here.
except EOFError:

 print '\nWhy did you do an EOF on me?‘

except ShortInputException, x:

 print ‘ \nThe input was of length %d, it
should be at least %d'\ % (x.length,
x.atleast)

else:

 print 'No exception was raised.'

Programming Python

ASC, National Centre for Physics

Exception Handling

Other work can go as usual here.
except EOFError:

 print '\nWhy did you do an EOF on me?‘

except ShortInputException, x:

 print ‘ \nThe input was of length %d, it
should be at least %d'\ % (x.length,
x.atleast)

else:

 print 'No exception was raised.'

Programming Python

ASC, National Centre for Physics

Exception Handling

What if we wanted some statements to
execute after the try block whether or
not an exception was raised?

This is done using the finally block.

Note that if we are using a finally
block, we cannot have any except
clauses for the same try block.

Programming Python

ASC, National Centre for Physics

Exception Handling

try:

f = file('poem.txt')

while True: # Our usual file-reading block

l = f.readline()

if len(l) == 0:

break

print l,

finally:

print 'Cleaning up...'

f.close()

Programming Python

ASC, National Centre for Physics

GUI – Tkinter Overview

Of various GUI options, Tkinter is the
de facto standard way to implement
portable user interfaces in Python
today.

Tkinter’s availability, accessibility,
documentation and extensions have
made it the most widely used Python
GUI solution for many years running.

Programming Python

ASC, National Centre for Physics

Tkinter Structure

Tkinter is the simply the name of Python’s
interface to Tk
 -- a GUI library originally written for use with the

Tcl programming language.

Python’s Tkinter module talks to Tk, and the
Tk API in turn interfaces with the underlying
window system:
 Microsoft Windows

 X Windows on Unix

 or Macintosh

Programming Python

ASC, National Centre for Physics

Tkinter Structure

Python’s Tkinter adds a software layer on top
of Tk that allows Python scripts to call out to
Tk to build and configure interfaces, and
routes control back to Python scripts that
handle user-generated events (e.g., mouse-
clicks).

i.e., GUI calls are internally routed from
Python script, to Tkinter, to Tk; GUI events
are routed from Tk, to Tkinter, and back to a
Python script.

Programming Python

ASC, National Centre for Physics

Tkinter Structure

Luckily, Python programmers don’t
normally need to care about all this call
routing going on internally;
 They simply make widgets and register

Python functions to handle widget events.

Because of the overall structure, event
handlers are usually known as callback
handlers as the GUI library “calls back”
to Python code when events occur.

Programming Python

ASC, National Centre for Physics

Tkinter Structure

Python/Tkinter programs are entirely event-
driven:

 They build displays and register handlers for
events, and then do nothing but wait for events to
occur.

 During the wait, the Tk GUI library runs an event
loop that watches for mouseclicks, keyboard
presses, and so on.

 All application program processing happens in the
registered callback handlers in response to events.

Programming Python

ASC, National Centre for Physics

A Tiny GUI example

 # Get a widget object

from Tkinter import Label

 # Make one

widget = Label(None, text=‘Hello GUI World!’)

 # Arrange it

widget.pack()

 # Start event loop

widget.mainloop()

Programming Python

ASC, National Centre for Physics

A Tiny GUI Example

The above written code is a complete
Python Tkinter GUI program.

When this script is run, we get a simple
window with a label in the middle.

Programming Python

ASC, National Centre for Physics

Tkinter Coding Basics

Although the last example was a trivial one
but it illustrates steps common to most
Tkinter programs:

 Loads a widget class from the Tkinter module

 Makes an instance of the imported Label class

 Packs(arrange) the new Label in its parent widget

 Calls mainloop to bring up the window and start
the Tkinter event loop

Programming Python

ASC, National Centre for Physics

Tkinter Coding Basics

The mainloop method called last puts the
label on the screen and enters a Tkinter wait
state, which watches for user-generated GUI
events.

Within the mainloop function, Tkinter
internally monitors things like the keyboard
and mouse, to detect user-generated events.

Because of this model, the mainloop call here
never returns to our script while the GUI is
displayed on screen.

Programming Python

ASC, National Centre for Physics

Tkinter Coding Basics

To display a GUI’s window, we need to call
mainloop.
To display widgets within the window, they
must be packed so that the Tkinter geometry
manager knows about them.
A mainloop without a pack shows an empty
window.
And a pack without a mainloop in a script
shows nothing since the script never enters
an event wait-state.

