
Introduction to C++

Third School on LHC Physics

Taimoor Khurshid
Exp High Energy Physics Group

National Center for Physics

Introduction

C++ is a statically typed, compiled, general purpose, case-sensitive,
free-form programming language that supports procedural, object-
oriented, and generic programming.

C++ is regarded as a middle-level language, as it comprises a
combination of both high-level and low-level language features.

C++ was developed by Bjarne Stroustrup starting in 1979 at Bell
Labs in Murray Hill, New Jersey as an enhancement to the C
language and originally named C with Classes but later it was
renamed C++ in 1983.

C++ is a superset of C, and that virtually any legal C program is a
legal C++ program.

C++ Program Structure

#include <iostream>

using namespace std;

// main() is where program execution begins.

int main()

{

cout << "Hello World"; // prints Hello

World

return 0;

}

Let us look at a simple code that would print the words Hello World.

// This is a comment
/* C++ comments can also

span multiple lines
*/

C++ buiLt-in data Types

Every programming language consists of certain data types.
C++ data types are :

1- bool (1B)
2- char (1B)
3- short int (2B)
4- int (4B)
5- long int (8B)
6- float (4B)
7- double (8B)
8- long double(16B)

We can check these figures by the built-in sizeof() operator.

Modifier Types
 Signed
 unsigned

 long
 short

Note:
• The modifiers signed, unsigned, long, and short can be applied to integer base types.
• In addition, signed and unsigned can be applied to char.
• long can be applied to double as well.
• None of these modifiers are applicable to bool type

C++ Operators

Arithmetic Operators

(+, -, \, *, ++, --)

Relational Operators

(==, !=, >, <, >=, <=)

Logical Operators

(&&, ||, !)

Bitwise Operators

(&, |, ^, ~, <<, >>)

Assignment Operators

(=, +=, -=, *=, /=, %=, <<=, >>=, &=, ^=, |=)

Misc Operators

(sizeof, cast, conditional(?:) etc.)

An operator is a symbol that tells the compiler to perform specific
mathematical or logical manipulations.

C++ Loop Types

while loop:
 Repeats a statement or group of statements until a given condition is true.
 It tests the condition before executing the loop body.

for loop:
 Execute a sequence of statements multiple times and abbreviates the code

that manages the loop variable.

do...while loop:
 Like a while statement
 Except that it tests the condition at the end of the loop body

nested loops:
 You can use one or more loop inside any another like:
While loop
 for loop
 do..while loop

C++ programming language provides following types of loop to
handle looping requirements

C++ Decision Making

If statement:
 An if statement consists of a boolean expression followed by one or more

statements.

If…else statement :
 An if statement can be followed by an optional else statement, which

executes when the boolean expression is false.

Switch statement:
 A switch statement allows a variable to be tested for equality against a list of

values.

nested if statement:
 You can use one if or else if statement inside another if or else if statement(s).
nested switch statement:
 You can use one swicth statement inside another switch statement(s).

C++ provides following types of decision making statements.

C++ functions

Functions have three main parts in the program:
1-Function Declaration
2-Function Definition(function declarator + body)
3-Function Call

Syntax:
return_type function_name (parameter list)

{
body of the function

}

Few Examples:
void function1 (int a , int b);
int function2 (void)
void function3 (void)
int function4 (int a, int b);

Some functions may not have a return value.
void can be used to indicate that “the function does not return a value”.

Some functions may not have formal parameters.
void can be used to indicate that “the function does not take any formal
parameters”.

Function Example:

C++ arrays
Syntax: Type array_name[size]

Allocates memory for size variable
Index of first element is 0
Index of last element is size-1
Size must be a constant
Individual elements of array accessed by indices.
Easier to use in loops.

10

20

30

40

50

a[0]

a[1]

a[2]

a[3]

a[4]

0x0012F578

0x0012F57C

0x0012F580

0x0012F584

0x0012F588

int a[5] = {10, 20, 30, 40, 50};

a[0] is 10
a[1] is 20
a[2] is 30
a[3] is 40
a[4] is 50

Array Example:

C++ Strings

Strings are the arrays of type character.
Last character in any string must be the null character (‘\0’).
So we have to specify a string size equal to the desired data size+1.
A character array/string can be initialized by a string literal such as
“TSLP” or individual character constants as ‘T’, ‘S’, ‘L’, ‘P’.

Strings Example:

Example:

char word*6+ = “fruit”; //word has size 6

OR

char list*6+ = ,‘f’,’r’,’u’,’i’,’t’, ‘\0’-;

Null String “”

“” contains null terminator.

Please note that 'a' and "a" are different

C++ pointers

Most of C++’s power is derived from pointers.

They allow different sections of code to share information easily.

Pointers are variables that contain as their values, “addresses of
other variables”.

OR
A pointer is a variable that holds a memory address.

Pointers are declared using an asterisk ‘*’

An integer pointer is declared as
int *ptr;

meaning that ptr is a pointer, pointing to an integer value.

Explanation: Pointers Example:

In Arrays one must use homogeneous data types. An array can only hold multiple

items of the same type.

Structure is a group of different predefined data types that must be declared globally

C++ structures

Syntax:

struct structure name/tag
{
// structure members reside here

} structure_variable;

struct STUDENT_TYPE
{

char name[20], street[20], city[20], state[30];
int zipcode;
int age;
double IDnum;
double grade;

} ;

Note semicolon!!!

STUDENT_TYPE is called the structure tag
It is your brand new data type, like int, double or char.

name, street, city, state, zipcode, age, IDnum, and
grade are structure members.

Structures Example:

C++ Classes
A class is an entity(sub-system) that contains some

information in the form of data and functions.

It has three types of access specifiers or modifiers for

maintaining access privileges to it‟s members.

- public (accessible to everyone)

- private (only accessible to class itself)

- protected (only accessible to children classes using

inheritance)

By default the members of every class are private unless

specified explicitly, whereas the members of any structure are

public.

Class is an abstract construct; we can‟t directly interact with

it unless:

we create its object(s)

C++ Classes
Constructor:

•A class constructor is a function of a class which is the very first

function to be executed when it‟s object is instantiated (created).

•It is a special type of function that gets called automatically when any

object of that class is created.

•Constructor always has the same name as that of it‟s class.

•A class data is not loaded into the memory unless it‟s object is made.

•All the normal data of a class is copied for it‟s newly created

object(except for it‟s functions).This leads for every object to maintain

it‟s specific state.

Destructor:

A destructor is a function of a class which is the very last function to

execute just before an object is going out of the memory.

C++ ClassesMember Functions:

The functions residing in the class are known as member

functions of that class.
•private data member of a class can‟t be directly accessed by the

object,
•Use member functions which are public in their access level

One should always make two types of functions.
1. Accessors (get(),for read-only purpose)

2. Mutator (set(),for write mode)

Member functions are defined outside the class body provided

that:
1. Declared inside the class.

2. While defining, it should be like following in declarator

• return_type class_name scope_resolution_operator

function_name function_paramters

e,g. void MyClass :: func1(int a) {….}

C++ Classes
Example Program:

Static Class Data and Static

Functions:

C++ Classes

•Static data is that data for which the state of all the objects
remains same at a particular instant of time.

•This data is meant for the whole class equally rather than for
individual objects.

•For all static data, no copy is generated for each newly
created object rather it is used from a common (shared)
location in memory for all the objects.

•To show the difference, it is always initialized outside the
class body and with the reference of the class name (plus the
scope resolution operator ::)

Static Class Data and Static

Functions:

C++ Classes

•If value of a static data is forcefully changed by any object,
it also gets changed for every other object of that class at
that very moment.

•Static function can only operate on the static data, but
static data can be used in non-static functions.

•Static members of a class can be called either through the
class name or through the object (unlike the non-static
members).

Static Class Data and Static Functions:

C++ Classes

class gamma
{

private: static int total;int id;
public : gamma() { total++;id = total;}

~gamma() { total--; cout << “\nDestroyoing ID # “<<id;}
static void showTotal() {cout << “\nTotal is “<<total;}
void showId() {cout << “ID Number is”<< id;}

};

int gamma::total=0; // static member initialization

main()
{

gamma :: showTotal();
gamma g1; gamma :: showTotal();
gamma g2, g3; gamma :: showTotal();
g1.showId(); g2.showId(); g3.showId();
cout << “\nEnd Of Program”;

}

•Arrays can also be of user-defined data types.
e.g. Test t[10];

•We can get pointer to user-defined data types too.
E.g.Test* t = new Test();

By doing this we get a nameless object whose reference is
maintained by ‟t‟.

•For user-defined pointers constructor is not called
unless we allocate memory for the object dynamically.

•Pointer to a class can be placed in the same class as it‟s
member.This technique is very useful in the complex
scenarios.

•We have to use „->‟ operator instead of „.‟ to access class
members or structure members through a pointer.

Array of Objects,Pointer to Objects:

C++ Classes

Good Luck

Back up slides

While loop

#include <iostream>
using namespace std;
int main ()
{
// Local variable declaration:
int a = 10;
// while loop execution
while(a < 20)

{ cout << "value of a: " << a << endl;
a++;
}

return 0;
}

while(condition)
{

statement(s);
}

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Example program: Out put:

Flow DiagramSyntax:

Back

For loop
for (init; condition; increment)

{
statement(s);

}

Example program:

Syntax: Flow Diagram

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Out put:

#include <iostream>
using namespace std;
int main ()
{
// for loop execution
for(int a = 10; a < 20; a = a + 1)

{
cout << "value of a: " << a << endl;

}
return 0;
}

Back

Do…while loop
do

{
statement(s);

} (condition);

Example program:

Syntax: Flow Diagram

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Out put:

#include <iostream>
using namespace std;
int main ()
{
// Local variable declaration:
int a = 10;
// do loop execution
do
{
cout << "value of a: " << a << endl;
a = a + 1;
}while(a < 20);
return 0;
}

Back

Nested loops

Example program for nested loop:

Syntax nested for:

2 is prime
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
.
.
97 is prime

Out put:

for (init; condition; increment)
{

for (init; condition; increment)
{

statement(s);
}
statement(s);

// you can put more statetments.
}

while(condition)
{

while(condition)
{

statement(s);
}

statement(s);
// you can put more statetments.
}

Syntax nested while:

do
{

statement(s);
// you can put more
statetments.

do
{

statement(s);
}while(condition);

}while(condition);

Syntax nested do while:

#include <iostream>

using namespace std;

int main ()

{ int i, j;

for(i=2; i<100; i++)

{

for(j=2; j <= (i/j); j++)

if(!(i%j)) break;// if factor found, not prime

if(j > (i/j)) cout << i << " is prime\n";

}

return 0;

}

Out put:

Back

If statement

#include <iostream>
using namespace std;
int main ()
{
// local variable declaration:
int a = 10;
// check the boolean condition
if(a < 20)

{
// if condition is true then print the following
cout << "a is less than 20;" << endl;

}
cout << "value of a is : " << a << endl;
return 0;
}

If (boolean_expression)
{

statement(s); //will execute if boolean is true
}

a is less than 20;
value of a is : 10

Example program: Out put:

Flow DiagramSyntax:

Back

If…else statement

#include <iostream>
using namespace std;
int main ()
{
int a = 100;
// check the boolean condition
if(a < 20)

{
// if condition is true then print the following
cout << "a is less than 20;" << endl;
}

else
{
// if condition is false then print the following
cout << "a is not less than 20;" << endl;
}

cout << "value of a is : " << a << endl;
return 0;
}

If (boolean_expression)
{

statement(s); //will execute if boolean is true
}

else
{

statement(s); //will execute if boolean is false
}

a is not less than 20;
value of a is : 100

Example program:

Out put:

Flow DiagramSyntax:

Back

switch statement
#include <iostream>
using namespace std;
int main ()
{
// local variable declaration:
char grade = 'D';
switch(grade) {
case 'A' :

cout << "Excellent!" << endl;
break;

case 'B' :
case 'C' :

cout << "Well done" << endl;
break;

case 'D' :
cout << "You passed" << endl;
break;

case 'F' :
cout << "Better try again" << endl;
break;

default :
cout << "Invalid grade" << endl;

}
cout << "Your grade is " << grade << endl;
return 0;
}

switch(expression){
case constant-expression :

statement(s);
break; //optional

case constant-expression :
statement(s);
break; //optional

default : //optional
statement(s);

}

You passed
Your grade is D

Example program:

Out put:

Flow Diagram
Syntax:

Back

Nested if statement

#include <iostream> using namespace std;
int main ()
{
// local variable declaration:
int a = 100;
int b = 200;
// check the boolean condition
if(a == 100)

{
// if condition is true then check the following
if(b == 200)

{
// if condition is true then print the following
cout << "Value of a is 100 and b is 200" << endl;
}

}
cout << "Exact value of a is : " << a << endl;
cout << "Exact value of b is : " << b << endl;
return 0;
}

if(boolean_expression 1)
{
// Executes when the boolean expression 1 is true
if(boolean_expression 2)

{
// Executes when the boolean expression 2 is true

}
}

Value of a is 100 and b is 200
Exact value of a is : 100
Exact value of b is : 200

Example program:

Out put:

Syntax:

Back

function example
Back

function example
Back

include <iostream>

using namespace std;

void func();

int main()

{

func(); // prints 0 0

func(); // prints 0 1

func(); // prints 0 2

}

void func()

{

int w=0;

static int x = 0;

cout << “Value of „w‟ is : ” << w << “\t”;

cout << “Value of „x‟ is : ” << x << endl;

x++; w++;

}

Static Variable Example

Array example

#include <iostream>
using namespace std;
#include <iomanip>
using std::setw;
int main ()
{

int n[10]; // n is an array of 10 integers
// initialize elements of array n to 0
for (int i = 0; i < 10; i++)

{
n[i] = i + 100; // set element at location i to i + 100

}
cout << "Element" << setw(13) << "Value" << endl;
// output each array element's value
for (int j = 0; j < 10; j++)

{
cout << setw(7)<< j << setw(13) << n[j] << endl;

}
return 0;

}

Element Value
0 100
1 101
2 102
3 103
4 104
5 105
6 106
7 107
8 108
9 109

An example which will show array declaration, assignment and accessing arrays in C++:

Out put:

Back

include <iostream.h>

void main(void)

{

char data[4] = “C++”;

cout << data;

}

include <iostream.h>

void main(void)

{

char data[4] = {„C‟, „+‟, „+‟};

for (int i=0;i<3;i++)

cout << data[i];

}

strings examples

char str[]="This is C++";

int i=0;

while(str[i])

{

cout<<str[i]<<endl;

i++;

}

int main()

{

char str[80];

cout << "Enter a string: ";

cin >> str; // read string from

keyboard

cout << "Here is your string: ";

cout << str<<"\n";

return 0;

}

#include <iostream>

int main ()

{

char name[256], title[256];

cout << "Enter your name: ";

cin.getline (name,256);

cout << "Enter your favourite movie: ";

cin.getline (title,256);

cout << name << "'s favourite movie is "

<< title;

return 0;

}

Back

5 x of type int0x0012F578

0x0012F690 ptr of type int*

int x = 5;

int* ptr;

C++ pointers

5 x of type int0x0012F578

0x0012F690 ptr of type int*

int x = 5;

int* ptr;

ptr = &x; //points to x

C++ pointers

0x0012F578

5 x of type int0x0012F578

ptr of type int*

int x = 5;

int* ptr;

ptr = &x; //points to x

C++ pointers

5

x of type intptr of type int*

Pointers Example:

Back

int main()

{

int balance;

int *balptr;

int value;

balance = 3200;

balptr = &balance;

value = *balptr;

cout << "balance is: " << value << '\n';

cout<< "Memory address where balance is

stored is:"<<balptr<<endl;

return 0;

}

pointers examples
Back

3200

0012FF7C

3200

balance0012FF7C

balptr0012F580

value

include <iostream.h>
main()
{
int var1 = 11;
int var2 = 22;
int* ptr; // pointer declaration
ptr = &var1; //initializing the pointer
cout << ptr; //Getting the address of

//var1
cout << *ptr << endl; //Dereferencing the pointer
ptr = &var2; //assigning 2nd value to the

//pointer
cout << ptr; //Getting the address of

//var2
cout << *ptr << endl; //Dereferencing the pointer
}

struct PERSON { // Declare PERSON struct type

int age; // Declare member types

long ss; float weight;

char name[25];

} family_member; // Define object of type PERSON

int main()

{

struct PERSON sister; // C style structure declaration

PERSON brother; // C++ style structure declaration

sister.age = 13; // assign values to members

brother.age = 7;

family_member.age = 9;

}

structures examples

struct car

{
int model_number;
char initials;
double cost;

};
main()

{ car c1; ; /*There is now a c1 variable that has modifiable
variables inside it*/

c1.model_number = 4400;
c1.initials = „a‟;
c1.cost = 500000;

}

Back

C++ Classes
#include <iostream>

using namespace std;

class SimpleClass

{

char *name;

int value;

public:

SimpleClass(char *n, int v)

{

cout << " " << n << ".SimpleClass(" << n << ",

" << v << ")\n";

name = n; value = v;

}

~SimpleClass()

{

cout << " " << name << ".~SimpleClass()\n";

}

void changeValue(int v)

{

cout << " " << name << ".changeValue(" << v <<

")\n";

value = v;

}

int readValue()

{

cout << " " << name << ".readValue()\n";

return value;

}

int copy(SimpleClass &sc)

{

cout << " " << name << ".copy(" << sc.name <<

")\n";

value = sc.value;

}

};

int main()

{

SimpleClass x("x", 12);

SimpleClass y("y", 14);

x.copy(y);

cout << x.readValue() << "\n";

y.changeValue(10);

cout << y.readValue() << "\n";

}

C++ Classes

Out Put:

x.SimpleClass(x, 12)

y.SimpleClass(y, 14)

x.copy(y)

x.readValue()

14

y.changeValue(10)

y.readValue()

10

y.~SimpleClass()

x.~SimpleClass()

