Search for Microscopic Black Holes in Multijet Final States with the ATLAS Detector using 8 TeV *pp* Collisions at the LHC¹

Asif Siddique

ICTP-NCP School on LHC Physics

November 19, 2014

¹PhD Thesis @ University of Alberta, Canada

Asif Siddique (NCP)

Microscopic Black Holes in ATLAS Data

Hierarchy Problem

Why is there a large difference between the Electroweak scale $(M_{EW} \sim 0.1 \text{ TeV})$ and the Planck scale $(M_P \sim 10^{16} \text{ TeV})$

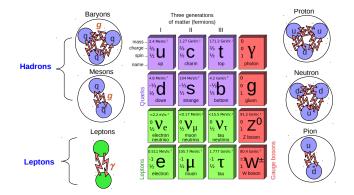
or

Why gravity appears weaker as compared to the SM forces ?

Low-scale gravity models propose a solution to this problem with the concept of extra spatial dimensions by observing microscopic black holes in high energy particle collisions.

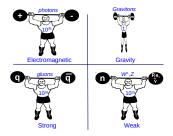
Astronomical Black Holes

A spacetime region with sufficiently compact mass produces an immense gravitational pull to prevent everything including light, from escaping. Classically, an event horizon is a surface around the a Black Hole which is called **point of no return**. Anything that touches event horizon, will be trapped and won't go back.


Microscopic Black Holes

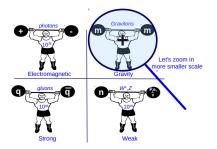
In high energy particle collider, mini Black Holes can be produced if there is a strong gravity at small scales. Microscopic Black Holes will evaporate **quickly** unlike astronomical Black Holes.

Fundamental Particles


- There are two type of particles in nature fermions and bosons.
- In fermions, Quarks and Leptons are the fundamental particles only.
 - Generally quarks exist in bound states, called Hadrons.

• How do they interact?

Fundamental Forces

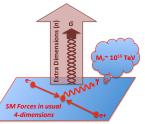

- All the particles interact via four fundamental forces in nature
- Standard Model of particle physics incorporates Electromagnetic, Weak and Strong forces but doesn't include gravity.

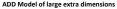
- Gravity appears to be much weaker than other forces.
- Is gravity really a very weak force?

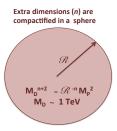
Extra-dimensions and Strong Gravity

- Gravity is the only force that can propagate in **extra dimensions** and most of its strength is spent in extra dimensions.
- At current fundamental scale 10^{-18} m we are not able to see extra-dimensions that's why gravity appears to be very weak.

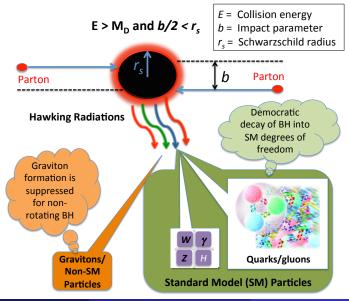
• If we go beyond the fundamental scale then we may see extra dimensioned and strong gravity at low scale

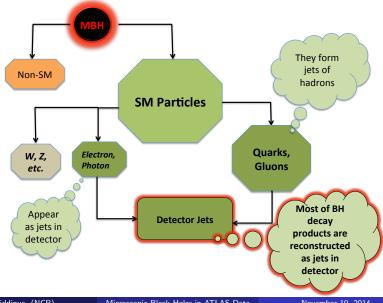

Asif Siddique (NCP)


Microscopic Black Holes in ATLAS Data


Low-scale Gravity

- In ADD model, there are large extra dimensions and only gravity can propagate in extra spatial dimensions (*n*).
- The extra dimensions are compactified in a sphere of radius *ℛ*, e.g.,
 ℛ ∼ submillimeter scale for n ≥ 3.
- At such a low scale (~ 𝔅), gravity will appear as strong as other forces, i.e., the apparent Plank scale (M_P) reduces to the true Planck scale (M_D²).
- As a consequence of strong gravity at low-scale, production of microscopic black holes (MBH) is possible in a high energy collision under certain conditions.


²where D = n + 4, total number of dimension


MBH Formation and Decay

Asif Siddique (NCP)

Microscopic Black Holes in ATLAS Data

MBH Signals in Multjet Final States

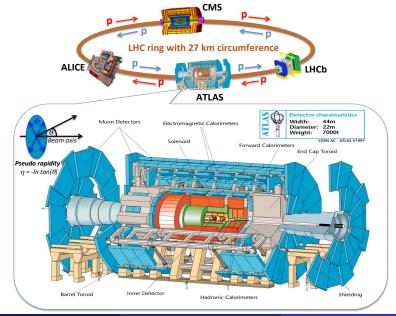
Asif Siddique (NCP)

Microscopic Black Holes in ATLAS Data

November 19, 2014 9 / 37

Microscopic Black Holes at the LHC

- MBH may be produced in high energy proton-proton (*pp*) collisions at the Large Hadron Collider (LHC).
- Once produced, MBH may be distinguished by
 - high jet multiplicity (N),
 - democratic (with equal probabilities) and
 - highly isotropic (same in all directions) decays


with the final state particles carrying hundreds of GeV of energy.

- Hence,
 - ▶ high-N, and
 - high-p_T (transverse momentum)

are the key signatures of MBH.

Therefore, we select **multijet final states with high sum of** p_T in the data recorded by the ATLAS detector at the LHC.

ATLAS Detector at the LHC

Asif Siddique (NCP)

Microscopic Black Holes in ATLAS Data

November 19, 2014 11 / 37

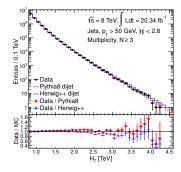
ATLAS 2012 data

- *pp*-collisions with 8 TeV centre of mass energy.
- An integrated luminosity of 20.34 fb^{-1} .

Dijet Monte Carlo Simulations (MCs)

Two types of MCs are used in this study.

- PYTHIA dijet
- HERWIG++ dijet


In this study, events with high sum p_T are studied for different jet multiplicities for both the data and MCs.

The Main Kinematic Variable, H_T

 The main kinematic variable chosen is *H_T*, which is the scalar sum of jet *p_T*, i.e.,

 $H_T = \sum p_T$ if $p_T > 50$ GeV and $|\eta| < 2.8$

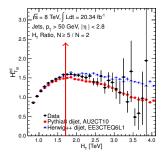
For different jet multiplicities, H_T distributions are expected to be shape invariant³ because of the collinear nature of the initial and final state radiation, which does not change the total transverse kinematics of the system.

H_T shape invariance is investigated by observing the ratio of the inclusive jet multiplicities *N* ≥ 3, 4, ..., 7 with respect to dijet multiplicity *N* = 2 (chosen as the baseline case).

³above a certain kinematical threshold

Dijet Multiplicity: A Baseline for Background Estimation

Dijet case is used as the baseline case to define the control region because

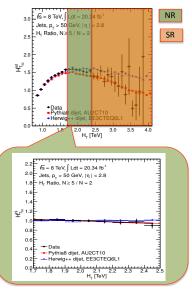

- MBH are expected to produce high jet multiplicities, therefore, the lowest multiplicity N = 2 case is chosen as the baseline case for the QCD background⁴ estimation.
- Dijet case is **well-studied** in the ATLAS and CMS collaborations, and no evidence of any resonance or new physics have been found.

Hence, the shape of the dijet- H_T is used to estimate background for the higher jet multiplicities $N \ge 3, 4, ..., 7$, on the basis of shape invariance assumption.

⁴Main background in this study

H_T Shape Invariance

• The H_T ratios of inclusive jet multiplicities $N \ge 3, 4, ..., 7$ with respect to N = 2 are examined for the shape invariance above a certain kinematical threshold. An example of the H_T ratio $(H_{T_{52}}^{\text{inl}} \equiv \text{Ratio of inclusive multiplicity})$ $N \ge 5$ to N = 2, is shown in figure.

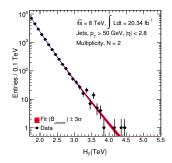


- A lower threshold for shape invariance, $H_T > 1.7$ TeV, is chosen for all the jet multiplicities.
- Different upper thresholds are studied to get a region with best shape invariance, which is defined as the normalization region.

At this stage, we can define three kinematical regions in the study.

The Three Kinematical Regions

- The control region (CR): $H_T > 1.7$ TeV and N = 2
 - the region where no new physics is expected.
- The normalization region (NR): $1.7 < H_T < 2.4$ TeV and N > 2
 - the region of best shape invariance
 - non-black hole region
- The signal region (SR): $H_T > 2.4$ TeV and N > 2
 - the region beyond the NR


Now we can go towards background estimation.

The main QCD background is determined from the data.

• The H_T distribution for the dijet (CR) is fitted by an ansatz function $f(x) = \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3\ln x}}$, where $x = H_T/\sqrt{s}$ and $\sqrt{s} = 8$ TeV. p_0, p_1, p_2 and p_3 are the fit parameters.

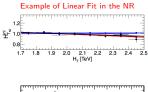
 The shape of dijet function normalized by a factor⁵, is applied to N > 2 to estimate the background in the SR.

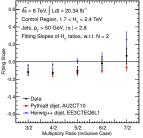
 $[f(x)]^{N>2} = n_f \times [f(x)]^{N=2}$

• The background estimation relies on the H_T shape invariance.

We need to investigate the H_T shape invariance carefully.

⁵Normalization factor $n_f = H_T^{N>2}/H_T^{N=2}$ is a number, obtained from the NR


H_T Shape Invariance in the NR and SR

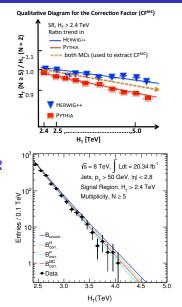

In the NR (Data and MCs)

- A linear-fit is applied to the H_T ratios, e.g. $H_{T_{52}}^{\text{inl}}$ for the data and MCs.
- For perfect shape invariance, the linear fit should have slope consistent with zero.
- The shape invariance is not perfect and definitely there are some **effects due to non-invariance**.

In the SR (MCs)

 By the same method, the H_T ratios for the MCs also indicate some effects due to non-invariance.

The non-invariant effects cause **an overestimation of the background** in the SR, therefore, the data-driven background is corrected based on the correction factors derived from MCs.


Corrections to the Background Estimation

• For jet multiplicities *N* > 2, the nominal background (data-driven) without any correction is denoted as

 $\mathsf{B}_{\mathsf{uncorr}} \equiv [f(x)]^{N>2}$

The effects due to non-invariance in the SR of the H_T distribution are compensated by applying a CF^{MC} (correction factor derived from the MCs) extracted from the invariance trend of both the MCs, i.e.,

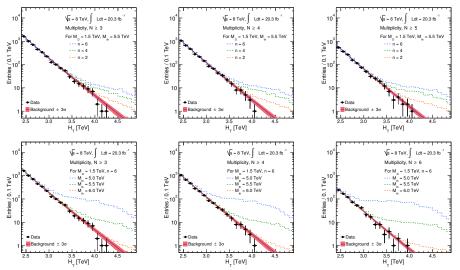
 $\mathsf{B}_{\mathsf{corr}} = \mathsf{CF}^{\mathsf{MC}} \times \mathsf{B}_{\mathsf{uncorr}}$

Following are the steps:

- Function fitting to the CR (N = 2)
 - An ansatz function is fitted to the dijet case, i.e., $[f(x)]^{N=2}$.
- Normalizing CR-fit to the higher multiplicities (N > 2)
 - On the basis of shape invariance $[f(x)]^{N>2} = n_f \times [f(x)]^{N=2} \equiv B_{uncorr}$
- Applying correction factors to the background estimation

► On the basis of MCs $B_{corr} = CF^{MC} \times B_{uncorr}$

What are the uncertainties involved in the background estimation ?

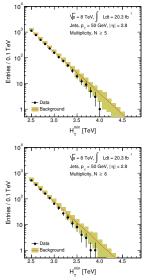

There are three types of systematic uncertainties on the background estimation involved in this study.

- Corrections to non-invariance (ΔB_{corr})
 - ► The CF^{MC} derived from straight line fit over the *H*_T ratio in the SR, introduces largest uncertainty in the study.
 - Computed from the errors and differences of fit parameters of two MCs.
- Jet Energy Uncertainties (ΔB_{jeu})
 - ▶ Jet Energy Scale (JES) and Jet Energy Resolution (JER) uncertainties.
 - Estimated by comparing distributions with and without JES/JER.
- Choice of the NR (ΔB_{nf})
 - ► The NR, 1.7 < H_T < 2.4 TeV, is slided ±0.1 TeV on the boundaries to quantify its effects on the background estimation.</p>

The amount of total uncertainty remains within 15-70% range in the 2.4 $< H_T < 4.5$ TeV of the SR, depending upon the (N, H_T) .

Data, Background and Signal

CHARYBDIS2 BH simulations are being used in these plots


Data Vs Background in the SR

• In the SR ($H_T > 2.4$ TeV), let's define another variable H_T^{\min} , i.e.,

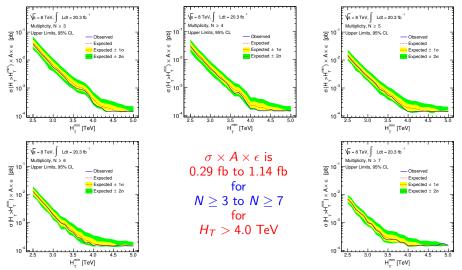
 $H_T > H_T^{\min}$

which means we consider SR with different lower thresholds, e.g., 2.4 TeV and above, 2.5 TeV and above, etc.

• The comparison of the data and estimated background along with the band of total uncertainty, as a function of H_T^{\min} is shown for $N \ge 6$ and $N \ge 7$ (as examples).

Typically, the data are in one sigma agreement to the background.

Data Vs Background in H_T^{\min}

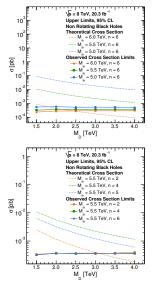

HTmin	Multi	plicity $N \ge 3$	Multiplicity $N \ge 4$		Multiplicity $N \ge 5$		Multiplicity $N \ge 6$		Multiplicity $N \ge 7$	
(TeV)	N ^{data}	N ^{bkg}	N ^{data}	N ^{bkg}	N ^{data}	N ^{bkg}	N ^{data}	N ^{bkg}	N ^{data}	N ^{bkg}
3.5	66	$78.6^{+13.8}_{-8.2}$	40	$49.9^{+10.7}_{-6.6}$	19	26.3 ^{+8.3} -9.3	8	$11.7^{+4.5}_{-4.5}$	2	$4.5^{+2.6}_{-2.1}$
3.6	47	$54.6^{+9.4}_{-6.9}$	25	$34.5^{+7.5}_{-4.8}$	12	$18.2^{+5.7}_{-6.8}$	4	$8.1^{+2.9}_{-3.5}$	2	$3.1^{+1.3}_{-1.7}$
3.7	32	37.9 ^{+6.8} -9.4	17	$23.9^{+6.3}_{-9.2}$	9	$12.6^{+4.3}_{-5.1}$	3	$5.6^{+2.6}_{-2.5}$	2	$2.1^{+0.9}_{-1.2}$
3.8	20	26.3 ^{+5.3} -11.0	9	$16.6^{+4.2}_{-7.1}$	5	8.7 ^{+2.8} -3.8	1	$3.8^{+1.6}_{-2.1}$	1	$1.4^{+0.6}_{-0.9}$
3.9	11	$18.3^{+3.8}_{-8.4}$	4	$11.5^{+4.5}_{-5.2}$	3	$6.0^{+2.2}_{-2.8}$	1	$2.6^{+2.3}_{-1.4}$	1	$1.0^{+0.5}_{-0.9}$
4.0	4	$12.7^{+3.1}_{-6.3}$	1	$7.9^{+5.0}_{-3.9}$	1	$4.1^{+1.4}_{-2.2}$	0	$1.8^{+0.8}_{-1.3}$	0	$0.7^{+0.3}_{-0.6}$
4.1	2	$8.7^{+4.0}_{-4.9}$	0	$5.5^{+8.0}_{-2.9}$	0	$2.8^{+1.7}_{-1.8}$	0	$1.2^{+0.4}_{-0.7}$	0	$0.5^{+0.2}_{-0.3}$
4.2	1	$6.0^{+1.5}_{-4.6}$	0	$3.7^{+0.9}_{-2.2}$	0	$1.9^{+0.6}_{-1.2}$	0	$0.8^{+0.3}_{-0.5}$	0	$0.3\substack{+0.1 \\ -0.2}$

Counting Experiment for Limits

- In order to calculate model-independent limits, number of events for the data, background and systematic uncertainties are computed as a function of H_T^{min} in the SR.
- For example, for N ≥ 5, all the numbers in terms of number of events are given with their corresponding H^{min}_T are:

H_T^{\min} (TeV)	Data	B _{corr}	ΔB_{corr}	ΔB_{jeu}	ΔB_{nf}
2.4	1675	1759.10	382.43	17.77	23.40
2.5	1134	1181.35	257.77	16.65	15.71
2.6	770	797.07	175.04	8.21	10.60
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
\downarrow	↓↓	\downarrow	↓	\downarrow	\downarrow
\downarrow	↓↓	\downarrow	↓ ↓	\downarrow	\downarrow
4.0	1	4.37	1.26	2.94	0.06
4.1	0	3.04	0.90	1.52	0.04

Model-Independent Limits



Upper limits on the cross-section times acceptance times efficiency ($\sigma \times A \times \epsilon$) with 95% confidence level (CL), on the production of new physics.

Asif Siddique (NCP)

Microscopic Black Holes in ATLAS Data

- CHARYBDIS2 BH simulations are used for non-rotating black holes.
- Different black hole samples as a function of extra dimensions n, minimum mass to produce BH M_{th} and true Planck scale M_D are used to compute the exclusion limits.
- The crossing points of theoretical cross sections and upper limits are used to convert upper limits to lower limits.

Exclusion Limits ATLAS Vs. CMS

Model-Independent Upper Limits

Model-independent upper Limit on $\sigma imes A imes \epsilon$ (fb)						
CMS (for 3.7 fb ⁻¹) CMS (for 12.1 fb ⁻¹) ATLAS (for 20.3 fb ⁻¹)						
0.70	0.20	0.15				

Model-Dependent Lower Limits

n		Model-depentent lower limits on <i>M</i> _{th} (TeV)					
	<i>М_D</i> (TeV)	CMS (for 3.7 fb $^{-1}$)	CMS (for 12.1 fb $^{-1}$)	ATLAS (for 20.3 fb $^{-1}$)			
2	3.5	4.9	5.2	5.4			
4	3.0	5.4	5.6	5.8			
6	2.5	5.7	5.9	6.0			

Our results have improved exclusion limits.

Asif Siddique (NCP)

• QCD Background

- Dijet multiplicity is the CR to estimate the background for N > 2.
- ► QCD background is determined from the data on the basis of *H*_T shape invariance for different jet multiplicities.
- The correction factors due to non-invariance are derived from MCs, and applied to the data-driven background estimation.

- The Data are in agreement to the background within one sigma.
 - ▶ No new physics have been found in the ATLAS 2012 data.
 - Exclusion limits are set on the production of new physics.

• Model-Independent and model-dependent exclusion Limits are set at the 95% CL.

Thanks

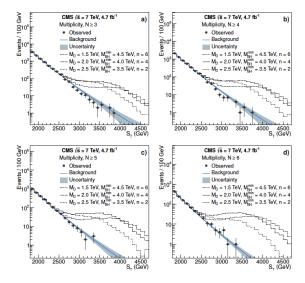
Backup slides

Chi-Squared $(\chi^2 = \sum \frac{(Obs - Exp)^2}{Exp})$ Test

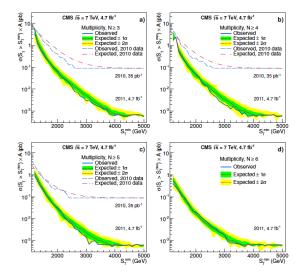
- The calculated chi square value can be used to obtain probabilities, or P values, from a chi square table
 - These probabilities allow us to determine the likelihood that the observed deviations are due to random chance alone
- Low chi square values indicate a high probability that the observed deviations could be due to random chance alone
- High chi square values indicate a low probability that the observed deviations are due to random chance alone
- If the chi square value results in a probability that is less than 0.05 (ie: less than 5%) it is considered *statistically significant*
 - The hypothesis is rejected

Degrees of Freedom	P = 0.99	0.95	0.80	0.50	0.20	0.05	0.01
1	0.000157	0.00393	0.0642	0.455	1.642	3.841	6.635
2	0.020	0.103	0.446	1.386	3.219	5.991	9.210
3	0.115	0.352	1.005	2.366	4.642	7.815	11.345
4	0.297	0.711	1.649	3.357	5.989	9.488	13.277
5	0.554	1.145	2.343	4.351	7.289	11.070	15.086
6	0.872	1.635	3.070	5.348	8.558	12.592	16.812
7	1.239	2.167	3.822	6.346	9.803	14.067	18.475
8	1.646	2.733	4.594	7.344	11.030	15.507	20.090
9	2.088	3.325	5.380	8.343	12.242	16.919	21.666
10	2.558	3.940	6.179	9.342	13.442	18.307	23.209

 $P(\alpha, x) = \int_x^\infty t^{\alpha-1} e^{-t} dt$ where $x \equiv \chi^2/2$ and $\alpha \equiv dof/2$

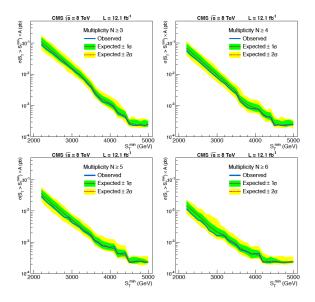

Overestimation in CMS BH searches

CMS 2011 Data, 4.7 fb⁻¹ [JHEP 04 (2012) 061]


S_T^{\min}	N ^{data}	N ^{bkg}					
	Multiplicity $N \ge 3$						
2.4	667	690 ± 45					
2.7	159	210 ± 28					
2.8	95	140 ± 23					
3.2	18	31 ± 11					
Multiplicity $N \ge 4$							
2.5	245	280 ± 24					
3.2	8	19 ± 6					
3.6	1	4.6 ± 2.7					
4.1	0	0.86 ± 0.9					

Asif Siddique (NCP)

CMS Results JHEP 04 (2012) 061


CMS Results JHEP 04 (2012) 061

Microscopic Black Holes in ATLAS Data

Asif Siddique (NCP)

CMS Results JHEP 1307 (2013) 178

37 / 37

Microscopic Black Holes in ATLAS Data