MSSM Higgs Searches

(Bugra Billin, Deniz Poyraz, Muhammad Gul, Michael Tytgat, Efe Yazgan)

Middle East Technical University, Ankara, Turkey

University of Gent Belgium

Outlines

- The CMS
- The Standard Model
- Motivations from the Higgs Sector
- MSSM
- Summary of Exo-Higgs Searches
- Heavy Higgs decaying to tt⁻
- Conclusion

The CMS

- Tracker: Cocentric layers of silicon sensors, measure charged particles trajectories
 - Electromagnetic Calorimeter: Lead-Tungstate crystals, electrons – positrons – photons interact there and their energy is measured
 - Hadronic Calorimeter: Hadrons interact brass layers and produce a shower of charged particles
 - Solenoid Magnet: Largest solenoid ever built, creates 4T field that bends the charged particle trajectories
 - Return Yoke: Magnetic field created from the solenoid is returned in the iron yoke. Offers support structure for the detector
 - Muon Chambers: Located in the iron yoke, measure energy of muons

The Standard Model

- Three families of quarks
- Three families of leptons
- The gauge bosons
- The recently discovered Higgs boson by CMS and ATLAS with a mass 125.3 ±0.4(stat.)±0.5(syst.)GeV. [1]
- Higgs boson was the last missing piece in the SM

STANDARD MODEL OF ELEMENTARY PARTICLES

www.shutterstock.com · 170480570

Motivations from the Higgs sector

- Hierarchy problem in the SM Higgs sector
 - Quantum corrections to the H mass have quadratic divergences
- The answer can be searched in SUSY
 - By introducing supersymmetric partners for the SM particles
 - Quadratic divergences are cancelled

_	Particles				Sparticles		
quarks	s $\begin{pmatrix} u_L \\ d_L \end{pmatrix}$	u_R	d_R	squarks	$\left(egin{array}{c} ilde{u}_L \ ilde{d}_L \end{array} ight)$	\tilde{u}_R	\tilde{d}_R
lepton	s $\begin{pmatrix} e_L \\ \nu_L \end{pmatrix}$	e_R		sleptons	$\begin{pmatrix} \tilde{e}_L \\ \tilde{\nu}_L \end{pmatrix}$	\tilde{e}_R	
Higgs dou	- · · -			Higgsinos	$ ilde{H}_1, ilde{H}_2$		
	W^\pm_μ, W^3_μ	3 1		winos	$\tilde{\omega}^{\pm}, \tilde{\omega}^3$		
boson	P			bino	$ ilde{b}$		
	G_{μ}^{A}			gluinos	\tilde{g}^A		

particle (spin
$$J$$
) $\stackrel{SUSY}{\longleftrightarrow}$ sparticle (spin $J \pm \frac{1}{2}$)

SUSY relates states with spins that differ by $\frac{1}{2}$.

Particles and their spartners have the same mass.

MSSM

- MSSM is the minimal extension to the standard model that realizes supersymmetry
- Higgs sector of MSSM consist of five states
 - h⁰, H⁰, A⁰, H[±]
- Higgs sector can be described by tanβ and m_A
- Our channel for Higgs searches
 - $H^{\pm} \rightarrow h^0 + W^{\pm}$
 - $h^0 \rightarrow bb^{-}W^{\pm} \rightarrow jj$
- H * can be produced with a top quark
 - $H \pm t$, $t \rightarrow W + b$, $W \rightarrow I + v_I$

MSSM parameters: mass $h^0 = 125$ GeV mass $H^0 = 300$ GeV mass $A^0 = 300$ GeV mass $H^{\pm} = 310$ GeV tan $\beta = 3$

"fixing h0=123-128 GeV"

Event Selection & Applied Cuts

Event (1 lepton, 3 b-jets, 2 non b-jets, MET) ΔR (I, j) > 0.5, lepton_(e, μ) Pt > 30 GeV, jet $|\eta|$ 2.4, b-jets CVS > 0.679 PAT Electron, Muon, Jets and MET (Type 0, 1, 2 correction)

Electron Channel

- Number of e = 1
- Number of muon = 0
- MET > 40 GeV
- Number of b-jets ≥ 3
- Number of non b-jets ≥ 2
- Electron |η| < 2.5

Muon Channel

- Number of e = 0
- Number of muon = 1
- MET > 40 GeV
- Number of b-jets ≥ 3
- Number of non b-jets ≥ 2
- Muon $|\eta| < 2.4$

Signal /THmTToLBNuHpTo2B2J_MHp-310_Mh1-125_8TeV-madgraph5-pythia8/ Summer12_DR53X-PU_S10_START53_V19-v1/AODSIM

Background

/TTJets_MassiveBinDECAY_TuneZ2star_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM

Cross sections, BRs and Cut Flow Table

	Signal
$\sigma(tH^-)$	$3.6 \cdot 10^{-2} \text{ pb}$
$BR(t \to bW^+) \times BR(W^+ \to e^+\nu_e)$	1×0.107
$BR(H^- \to hW^-) \times BR(W^- \to q\bar{q}) \times BR(h^0 \to bb)$	$0.035 \times 0.676 \times 0.708$
$\sigma(tH^- \to bW^+h^0W^- \to b \ e^+\nu_e \ bb \ q\bar{q})$	6.6·10 ^{−5} pb

	Background
$\sigma(t\bar{t})$	245 pb
$BR(t \to bW^+) \times BR(W^+ \to e^+\nu_e)$	1×0.107
$BR(\bar{t} \to bW^-) \times BR(W^- \to q\bar{q})$	1×0.676
$\sigma(t\bar{t} \to bW^+ bW^- \to b e^+ \nu_e bq\bar{q})$	17.80 pb

Cross section and branching ratios for signal and background at √s=8TeV

Cut Flow table for electron channel

Electron Channel	Signal	Signal in %	Background	Background in %	Significance
	N_{event}		N_{event}		S/\sqrt{B}
Before cuts	1.292	100	3.5e+05	100	2.193e-03
Number of electron =1	0.502	38.6	8.1e+04	23.26	1.7e-03
Number of muon =0	0.413	31.7	7.1e+04	20.28	1.5e-03
MET $p_T > 40 \text{ GeV}$	0.299	22.9	4.2e+04	12.10	1.4e-03
Number of non-b jets ≥ 2	0.299	22.3	3.8e+04	10.95	1.5e-03
Number of b jets ≥ 3	0.056	4.3	9.0e+02	0.25	1.8e-03
$\Delta R(\text{lepton,jet}) > 0.5$	0.050	3.8	8.1e+02	0.23	1.7e-03
$ m_{jj} - m_W < 25 \text{GeV}$	0.035	2.7	4.6e+02	0.13	1.6e-03
$ m_{e\nu b} - m_t < 25 \text{ GeV}$	0.022	1.7	2.8e+02	0.08	1.2e-03
$ m_{b\bar{b}} - m_h < 25 \text{ GeV}$	0.018	1.3	2.1e+02	0.06	1.2e-03
$ m_{jjb\bar{b}} - m_H < 25 \text{ GeV}$	0.016	1.2	1.5e+02	0.04	1.2e-03
$ m_{jjbb\bar{b}e\nu} - m_H < 25 \text{ GeV}$	0.006	0.4	6.2e+01	0.01	7.5e-04

Conclusion:

The number of events are normalized with £=19.7fb⁻¹and σ_s =3.6*10-2pb, σ_{bkg} =245pb. The initial number of events ~ 1 and significance ~ 10⁻³ which becomes worse after the cuts applied.

Updated: 23 July 2014

CMS Analysis Note

The content of this note is intended for CMS internal use and distribution only

Conclusion:

- The analysis shows that the search for H[±] using this channel is not feasible at √s = 8TeV.
- For \sqrt{s} =14 TeV the δ_s = 0.19pb using same parameters.
- At √s =14 TeV, £=1000 fb⁻¹ it might me possible to observe this channel using a multivariate analysis.

Search for a heavy charged MSSM Higgs production with $gb \to tH^\pm \to (hW^\pm)(bW^-)$ at \sqrt{s} =8 TeV

B. Bilin¹, M. Gul², D. Poyraz², M. Tytgat², E. Yazgan²

Middle East Techinical University, Ankara, Turkey
Ghent University, Ghent, Belgium

Abstract

The feasibility of the search for a heavy charged MSSM Higgs boson through $gb \to H^{\pm}t$ production process is presented. The full production and decay chain studied is $gb \to H^{\pm}t \to (hW^{\pm})(bW^{+}) \to (b\bar{b})(jj)(bl\nu_{l})$. The analysis is performed using CMS proton proton collision simulation at $\sqrt{s}=8$ TeV. The study shows that it is not feasible to do this search with 19.7 $fb^{-}1$ of LHC taken at $\sqrt{s}=8$ TeV.

Version 0

11

New Channel for Heavy H searches

- At 19.7 fb⁻¹, the previous channel is not suitable because of low cross section.
- A new channel will be adopted for H searches.

• pp --> H --> tt^- , tt^- --> WW bb, W --> jj, W --> $l+v_1$

BRs of Higgs in same mass range in SM and MSSM

- The SM H-->tt⁻ BR is smaller than that of MSSM in the same mass region.
- For m_A , $m_H > 2m_t$ and $\tan \beta \sim 1$ the BR of H--> tt^- is 100%
- For tanβ >> 1, coupling to top quark suppressed and bottom quark enhanced.
- Its production via a b loop 10 and decay into bb is non negligible

Distinguish H from A

- H and A are almost degenerate in mass in the relevant region of parameter space (m_A, tanβ).
- ▶ H--> tt⁻ and A--> tt⁻ can't be distinguish experimentally.
- For tanβ ~ 1, A couples to top but doesn't to weak boson.
- For tanβ >> 1, the coupling of A to top is suppressed.

Mass and pt of ttbar

- Events have generated using madGraph
- The interference phenomenon has included
- Higgs has been produced using mass range from 400-800 GeV and energy is 13TeV
- Reconstructed mass and pt of ttbar are plotted

Pt of top and tbar

Top and tbar goes back to back

Conclusion

- A cut and count analysis is performed for Charged Higgs associated with top quark.
- The number of events for Signal and Background are normalized to £=19.7 fb⁻¹ and Θ=3.6*10⁻² pb.
- ▶ The signal significance is $\sim 10^{-3}$.
- ▶ This channel is not feasible at \sqrt{s} = 8TeV.
- At \sqrt{s} = 14TeV charged higgs can be searched for with a high statistics sample.
- ► For LHC Run II, H--> tt⁻ is a promising channel for heavy Higgs searches.

References

- 1. <u>arXiv:1207.7235[hep-ex]</u>
- 2. <u>http://cms.web.cern.ch/news/cms-closes-major-chapter-higgs-measurements</u>

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/MSSMCharged

AN

http://cms.cern.ch/iCMS/jsp/openfile.jsp?tp=draft&files=AN2014_193_v1.pdf

Thanks

Back Up Slides

SuperSymmetry (motivation from Higgs sector)

Hierarchy problem in the SM Higgs sector:
 Quantum corrections to the H mass have quadratic divergencies

$$- \underbrace{\hspace{-1cm} \int_{H}^{W}}_{H} + - \underbrace{\hspace{-1cm} \int_{H}^{F}}_{H} - \delta m_{H}^{2} \sim \frac{\alpha}{\pi} (\Lambda^{2} + m_{F}^{2})$$

The cutoff Λ represents the scale up to which the Standard Model remains valid.

By introducing supersymmetric partners for the SM particles

quadratic divergencies are cancelled

$$\delta m_H^2 \sim \frac{\alpha}{\pi} (m_F^2 - \widetilde{m}_F^2)$$

Supersymmetry

 New spin-based symmetry relating fermions and bosons:

- Minimal SuperSymmetric SM (MSSM):
 - Mirror spectrum of particles
 - Enlarged Higgs sector: two doublets with 5 physical states

$$H_U, H_D \longrightarrow h, H, A, H^{\pm}$$

Naturally solve the hierarchy problem

gaugino/higgsino mixing

- Define R-parity = $(-1)^{3(B-L)+2s}$
 - R = 1 for SM particles
 - \blacksquare R = -1 for MSSM partners

If conserved, provides

Dark Matter Candidate

(Lightest Supersymmetric Particle)

MSSM Higgs sector

MSSM HIGGS sector

+To provide masses to both up-type and down-type quarks, and to ensure anomaly cancellation, the MSSM has two Higgs complex-doublet superfields

$$\Phi_d = (\Phi_d^0, \Phi_d^-) \text{ and } \Phi_u = (\Phi_u^+, \Phi_u^0) \quad \langle \Phi_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_d \\ 0 \end{pmatrix}, \quad \langle \Phi_u \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_u \end{pmatrix},$$
where $\sqrt{v_d^2 + v_u^2} = 2M_W/g = 246 \text{ GeV}$

4Out of 8 DOF, 3 serve as GB, absorbed into longitudinal components of the W and Z, 5 DOF remains:

$$h = -(\sqrt{2}\operatorname{Re} \Phi_d^0 - v_d)\sin\alpha + (\sqrt{2}\operatorname{Re} \Phi_u^0 - v_u)\cos\alpha$$

$$H = (\sqrt{2}\operatorname{Re} \Phi_d^0 - v_d)\cos\alpha + (\sqrt{2}\operatorname{Re} \Phi_u^0 - v_u)\sin\alpha$$

$$A = \sqrt{2}(\operatorname{Im} \Phi_d^0\sin\beta + \operatorname{Im} \Phi_u^0\cos\beta), \quad H^{\pm} = \Phi_d^{\pm}\sin\beta + \Phi_u^{\pm}\cos\beta$$

 α is (h, H) mixing angle

 $\tan \beta = v_u/v_d$ and M_A is the conventional choice to define the Higgs sector: $M_{H^{\pm}} = \sqrt{M_A^2 + M_W^2}$

$$M_{h,H}^2 = \frac{1}{2} \left[(M_A^2 + M_Z^2) \mp \sqrt{(M_A^2 + M_Z^2)^2 - 4M_A^2 M_Z^2 \cos^2 2\beta} \right], \quad M_h < M_Z$$

h/H/A couplings

⋄ g	_{MSSM} = ξ g _{SI}	М				
ىلى	t	b/ τ	W/Z	• no coupling of A to W/Z		
h	cosα/sinβ	-sinα/cosβ	$sin(\alpha-\beta)$	• small $\alpha \rightarrow$ small BR(h $\rightarrow \tau\tau$,bb)		
\pm	$sin\alpha/sin\beta$	cosα/cosβ	$cos(\alpha-\beta)$			
Α	cotβ	tanβ		 large β → large BR(h,H,A→ττ,bb) 		
α	$\alpha=$ mixing btw. CP-even neutral Higgs bosons					

Parameters used for Generation

- Mass of Heavy Higgs = 400, 600 & 800 GeV
- Mass of SM Higgs = 125GeV
- Mass of top quark = 174.3 GeV
- Energy = 13 TeV
- LHAPDF set = CT10
- ▶ LHAPDF ID = 10800
- Cross section:
 - For mH = 400GeV, xsec = 1.578 ± 0.02 pb
 - For mH = 800 GeV, xsec = $0.3068 \pm 9.25e^{-5}$ pb

- Model = topBSM
- Applied cuts:
 - Pt of jets ≥ 20 GeV
 - Charged lepton pt ≥ 10GeV
 - Dr $(j,j) \ge 0.4$
 - Dr $(I,I) \ge 0.4$
 - Dr (j,l) ≥ 0.4
- No. of events = 2 million
- All plots are scaled to 1