MSSM Higgs Searches

(Bugra Billin, Deniz Poyraz, Muhammad Gul, Michael Tytgat, Efe Yazgan)
Middle East Technical University, Ankara, Turkey University of Gent Belgium

Outlines

- The CMS
- The Standard Model
- Motivations from the Higgs Sector
- MSSM
- Summary of Exo-Higgs Searches
- Heavy Higgs decaying to tt
- Conclusion

The CMS

- Tracker: Cocentric layers of silicon sensors, measure charged particles trajectories
- Electromagnetic Calorimeter: LeadTungstate crystals, electrons - positrons photons interact there and their energy is measured
- Hadronic Calorimeter: Hadrons interact brass layers and produce a shower of charged particles
Solenoid Magnet: Largest solenoid ever built, creates 4T field that bends the charged particle trajectories
- Return Yoke: Magnetic field created from the solenoid is returned in the iron yoke. Offers support structure for the detector
- Muon Chambers: Located in the iron yoke, measure energy of muons

The Standard Model

- Three families of quarks
- Three families of leptons standard model of elementary particles
- The gauge bosons
- The recently discovered Higgs boson by CMS and ATLAS with a mass 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV . [1]
- Higgs boson was the last missing piece in the SM

www.shutterstock.com • 170480570

Motivations from the Higgs sector

- Hierarchy problem in the SM Higgs sector
- Quantum corrections to the H mass have quadratic divergences
- The answer can be searched in SUSY
- By introducing supersymmetric partners for the SM particles
- Quadratic divergences are cancelled

Particles			Sparticles		
quarks	$\binom{u_{L}}{d_{L}}$	$u_{R} \quad d_{R}$	squarks	$\binom{\tilde{u}_{L}}{\tilde{d}_{L}}$	$\tilde{u}_{R} \quad \tilde{d}_{R}$
leptons	$\binom{e_{L}}{\nu_{L}}$	e_{R}	sleptons	$\binom{\tilde{e}_{L}}{\tilde{\nu}_{L}}$	\tilde{e}_{R}
Higgs doublet bosons	$\begin{aligned} & H_{1}, H_{2} \\ & W_{\mu}^{ \pm}, W_{\mu}^{3} \\ & B_{\mu} \\ & G_{\mu}^{A} \end{aligned}$		Higgsinos winos bino gluinos	$\begin{aligned} & \tilde{H}_{1}, \tilde{H}_{2} \\ & \tilde{\omega}^{ \pm}, \tilde{\omega}^{3} \\ & \tilde{b} \\ & \tilde{g}^{A} \end{aligned}$	

particle $(\operatorname{spin} J) \quad \stackrel{\text { SUSY }}{\longleftrightarrow} \quad$ sparticle $\left(\right.$ spin $\left.J \pm \frac{1}{2}\right)$

SUSY relates states with spins that differ by $\frac{1}{2}$.
Particles and their spartners have the same mass.

MSSM

- MSSM is the minimal extension to the standard model that realizes supersymmetry
- Higgs sector of MSSM consist of five states
- $h^{0}, H^{0}, A^{0}, H^{ \pm}$
- Higgs sector can be described by $\tan \beta$ and m_{A}
- Our channel for Higgs searches - $\mathrm{H}^{ \pm} \rightarrow h^{0}+W^{ \pm}$

$$
\text { - } \mathrm{h}^{0} \rightarrow \mathrm{bb} \cdot \mathrm{~W}^{ \pm} \rightarrow \mathrm{j} \mathrm{j}
$$

- $\mathrm{H}^{ \pm}$can be produced with a top quark

$$
\circ \mathrm{H}^{ \pm t}, \mathrm{t} \rightarrow \mathrm{~W}+\mathrm{b}, \mathrm{~W} \rightarrow \mathrm{I}+\mathrm{v}_{\mathrm{l}}
$$

$$
\begin{aligned}
& \text { MSSM parameters: } \\
& \text { mass } h^{0}=125 \mathrm{GeV} \\
& \text { mass } \mathrm{H}^{0}=300 \mathrm{GeV} \\
& \text { mass } \mathrm{A}^{0}=300 \mathrm{GeV} \\
& \text { mass } \mathrm{H}^{ \pm}=310 \mathrm{GeV} \\
& \tan \beta=3
\end{aligned}
$$

Event Selection \& Applied Cuts

Event (1 lepton, 3 b-jets, 2 non b-jets, MET)

$\Delta R(I, j)>0.5$, lepton(e, $\mu) \mathrm{Pt}>30 \mathrm{GeV}$, jet $|\eta| 2.4$, b -jets CVS >0.679
PAT Electron, Muon, Jets and MET (Type 0, 1, 2 correction)

- Electron Channel
- Number of $\mathrm{e}=1$
- Number of muon $=0$
- MET > 40 GeV
- Number of b-jets ≥ 3
- Number of non b-jets ≥ 2
- Electron $|n|<2.5$
- Muon Channel
- Number of $\mathrm{e}=0$
- Number of muon =1
- MET > 40 GeV
- Number of b-jets ≥ 3
- Number of non b-jets ≥ 2
- Muon $|\eta|<2.4$

Signal

Background
/TTJets_MassiveBinDECAY_TuneZ2star_8TeV-madgraph-tauola/ Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM

$t \rightarrow W+b$
$\mathrm{W} \rightarrow \mathrm{e}+\mathrm{v}_{\mathrm{e}}$

Leptonic W mass

Cross sections, BRs and Cut Flow Table

	Signal
$\sigma\left(\mathrm{tH}^{-}\right)$	$3.6 \cdot 10^{-2} \mathrm{pb}$
$\mathrm{BR}\left(t \rightarrow b W^{+}\right) \times \mathrm{BR}\left(W^{+} \rightarrow e^{+} \nu_{e}\right)$	1×0.107
$\mathrm{BR}\left(H^{-} \rightarrow h W^{-}\right) \times \mathrm{BR}\left(W^{-} \rightarrow q \bar{q}\right) \times \mathrm{BR}\left(h^{0} \rightarrow b b\right)$	$0.035 \times 0.676 \times 0.708$
$\sigma\left(t H^{-} \rightarrow b W^{+} h^{0} W^{-} \rightarrow b e^{+} \nu_{e} b b q \bar{q}\right)$	$6.6 \cdot 10^{-5} \mathrm{pb}$

	Background
$\sigma(\mathrm{tt})$	245 pb
$\mathrm{BR}\left(t \rightarrow b W^{+}\right) \times \mathrm{BR}\left(W^{+} \rightarrow e^{+} \nu_{e}\right)$	1×0.107
$\mathrm{BR}\left(\bar{t} \rightarrow b W^{-}\right) \times \mathrm{BR}\left(W^{-} \rightarrow q \bar{q}\right)$	1×0.676
$\sigma\left(\mathrm{tt} \rightarrow b W^{+} b W^{-} \rightarrow b e^{+} \nu_{e} b q \bar{q}\right)$	17.80 pb

Cross section and branching ratios for signal and background at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$

Cut Flow table for electron channel

Electron Channel	Signal $\mathrm{N}_{\text {event }}$	Signal in \%	Background $\mathrm{N}_{\text {event }}$	Background in \%	Significance $\mathrm{S} / \sqrt{\mathrm{B}}$
Before cuts	1.292	100	$3.5 \mathrm{e}+05$	100	$2.193 \mathrm{e}-03$
Number of electron $=1$	0.502	38.6	$8.1 \mathrm{e}+04$	23.26	$1.7 \mathrm{e}-03$
Number of muon $=0$	0.413	31.7	$7.1 \mathrm{e}+04$	20.28	$1.5 \mathrm{e}-03$
MET $p_{T}>40 \mathrm{GeV}$	0.299	22.9	$4.2 \mathrm{e}+04$	12.10	$1.4 \mathrm{e}-03$
Number of non-b jets ≥ 2	0.299	22.3	$3.8 \mathrm{e}+04$	10.95	$1.5 \mathrm{e}-03$
Number of b jets ≥ 3	0.056	4.3	$9.0 \mathrm{e}+02$	0.25	$1.8 \mathrm{e}-03$
$\Delta R($ lepton,jet $)>0.5$	0.050	3.8	$8.1 \mathrm{e}+02$	0.23	$1.7 \mathrm{e}-03$
$\left\|m_{j j}-m_{W}\right\|<25 \mathrm{GeV}$	0.035	2.7	$4.6 \mathrm{e}+02$	0.13	$1.6 \mathrm{e}-03$
$\left\|m_{e v b}-m_{t}\right\|<25 \mathrm{GeV}$	0.022	1.7	$2.8 \mathrm{e}+02$	0.08	$1.2 \mathrm{e}-03$
$\left\|m_{b \bar{b}}-m_{h}\right\|<25 \mathrm{GeV}$	0.018	1.3	$2.1 \mathrm{e}+02$	0.06	$1.2 \mathrm{e}-03$
$\left\|m_{j j b \bar{b}}-m_{H}\right\|<25 \mathrm{GeV}$	0.016	1.2	$1.5 \mathrm{e}+02$	0.04	$1.2 \mathrm{e}-03$
$\left\|m_{j j b b \bar{b} e \nu}-m_{H}\right\|<25 \mathrm{GeV}$	0.006	0.4	$6.2 \mathrm{e}+01$	0.01	$7.5 \mathrm{e}-04$

Conclusion:

The number of events are normalized with $£=19.7 \mathrm{fb}{ }^{-1}$ and $\sigma_{\mathrm{s}}=3.6^{*} 10-2 \mathrm{pb}, \sigma_{\mathrm{bkg}}=245 \mathrm{pb}$. The initial number of events ~ 1 and significance $\sim 10^{-3}$ which becomes worse after the cuts applied.

CMS Analysis Note

Conclusion:

- The analysis shows that the search for $\mathrm{H}^{ \pm}$using this channel is not feasible at $\sqrt{s}=8 \mathrm{TeV}$.
- For $\sqrt{ } \mathrm{s}=14 \mathrm{TeV}$ the $\sigma_{\mathrm{s}}=0.19 \mathrm{pb}$ using same parameters.
- At $\sqrt{ } \mathrm{s}=14 \mathrm{TeV}, £=1000 \mathrm{fb}^{-1} \mathrm{it}$ might me possible to observe this channel using a multivariate analysis.

Search for a heavy charged MSSM Higgs

 production with $g b \rightarrow t H^{ \pm} \rightarrow\left(h W^{ \pm}\right)\left(b W^{-}\right)$at $\sqrt{s}=8 \mathrm{TeV}$B. Bilin ${ }^{1}$, M. Gul ${ }^{2}$, D. Poyraz ${ }^{2}$, M. Tytgat ${ }^{2}$, E. Yazgan ${ }^{2}$
${ }^{1}$ Middle East Techinical University, Ankara, Turkey
${ }^{2}$ Ghent University, Ghent, Belgium

[^0]
New Channel for Heavy H searches

- At $19.7 \mathrm{fb}^{-1}$, the previous channel is not suitable because of low cross section.
- A new channel will be adopted for H searches.
- pp --> H --> tt-, tt- -->WW bb, W --> jj, W --> I+v,

BRs of Higgs in same mass range in SM and MSSM

- The SM H-->tt BR is smaller than that of MSSM in the same mass region.
- For $m_{A}, m_{H}>2 m_{t}$ and $\tan \beta \sim 1$ the BR of $\mathrm{H}-->\mathrm{tt}^{-}$ is 100%
- For $\tan \beta \gg 1$, coupling to top quark suppressed and bottom quark enhanced.
- Its production via a b loop ${ }_{10}$ and decay into bb^{-}is non negligible

Distinguish H from A

- H and A are almost degenerate in mass in the relevant region of parameter space $\left(m_{A}, \tan \beta\right)$.
- H --> tt and $\mathrm{A}-->\mathrm{tt}$ can't be distinguish experimentally.
- For $\tan \beta \sim 1$, A couples to top but doesn't to weak boson.
- For $\tan \beta \gg 1$, the coupling of A to top is suppressed.

Mass and pt of ttbar

- Events have generated using madGraph
- The interference phenomenon has included
- Higgs has been produced using mass range from 400800 GeV and energy is 13 TeV
- Reconstructed mass and pt of ttbar are plotted

Pt of top and tbar

- Top and tbar goes back to back

Conclusion

- A cut and count analysis is performed for Charged Higgs associated with top quark.
- The number of events for Signal and Background are normalized to $£=19.7 \mathrm{fb}^{-1}$ and $\delta=3.6^{*} 10^{-2} \mathrm{pb}$.
- The signal significance is $\sim 10^{-3}$.
- This channel is not feasible at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$.
- At $\sqrt{ } s=14 \mathrm{TeV}$ charged higgs can be searched for with a high statistics sample.
- For LHC Run II, H--> tt is a promising channel for heavy Higgs searches.

References

1. arXiv:1207.7235[hep-ex]
2. http://cms.web.cern.ch/news/cms-closes-major-chapter-higgs-
measurements
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/MSSMCharged
AN
http://cms.cern.ch/iCMS/isp/openfile.jsp?tp=draft\&files=AN2014 193 v1.pdf

Back Up Slides

SuperSymmetry (motivation from Higg sectol)

- Hierarchy problem in the SM Higgs sector:

Quantum corrections to the H mass have quadratic divergencies

The cutoff Λ represents the scale up to which the Standard Model remains valid.

- By introducing supersymmetric partners for the SM particles

- quadratic divergencies are cancelled

$$
\delta m_{H}^{2} \sim \frac{\alpha}{\pi}\left(m_{F}^{2}-\widetilde{m}_{F}^{2}\right)
$$

Supersymmetry

New spin-based symmetry relating fermions and bosons:

Q|Boson> = Fermion
Q|Fermion> = Boson

gaugino/higgsino mixiñg

Naturally solve the
 hierarchy problem

- Define R-parity $=(-1)^{3(B-L)+2 s}$
- $R=1$ for SM particles
- $\quad R=-1$ for MSSM partners

If conserved, provides
Dark Matter Candidate (Lightest Supersymmetric Particle)

MSSM Higgs sector
 MSSM HIGGS sector

*To provide masses to both up-type and down-type quarks, and to ensure anomaly cancellation, the MSSM has two Higgs complex-doublet superfields $\Phi_{d}=\left(\Phi_{d}^{0}, \Phi_{d}^{-}\right)$and $\Phi_{u}=\left(\Phi_{u}^{+}, \Phi_{u}^{0}\right)$

$$
\left\langle\Phi_{d}\right\rangle=\frac{1}{\sqrt{2}}\binom{v_{d}}{0}, \quad\left\langle\Phi_{u}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{u}}
$$ where $\sqrt{v_{d}^{2}+v_{u}^{2}}=2 M_{W} / g=246 \mathrm{GeV}$

\$Out of 8 DOF, 3 serve as GB, absorbed into longitudinal components of the W and $Z, 5$ DOF remains:

$$
\begin{gathered}
h=-\left(\sqrt{2} \operatorname{Re} \Phi_{d}^{0}-v_{d}\right) \sin \alpha+\left(\sqrt{2} \operatorname{Re} \Phi_{u}^{0}-v_{u}\right) \cos \alpha \\
H=\left(\sqrt{2} \operatorname{Re} \Phi_{d}^{0}-v_{d}\right) \cos \alpha+\left(\sqrt{2} \operatorname{Re} \Phi_{u}^{0}-v_{u}\right) \sin \alpha \\
A=\sqrt{2}\left(\operatorname{Im} \Phi_{d}^{0} \sin \beta+\operatorname{Im} \Phi_{u}^{0} \cos \beta\right), \quad H^{ \pm}=\Phi_{d}^{ \pm} \sin \beta+\Phi_{u}^{ \pm} \cos \beta
\end{gathered}
$$

α is (h, H) mixing angle
$\tan \beta=v_{u} / v_{d}$ and M_{A} is the conventional choice to define the Higgs sector: $M_{H^{ \pm}}=\sqrt{M_{A}^{2}+M_{W}^{2}}$
$M_{h, H}^{2}=\frac{1}{2}\left[\left(M_{A}^{2}+M_{Z}^{2}\right) \mp \sqrt{\left(M_{A}^{2}+M_{Z}^{2}\right)^{2}-4 M_{A}^{2} M_{Z}^{2} \cos ^{2} 2 \beta}\right], \quad M_{h}<M_{Z}$

h/H/A couplings

* $\mathrm{g}_{\text {MSSM }}=\xi \mathrm{g}_{\text {SM }}$				- no coupling of A to W/Z - small $\alpha \rightarrow$ small BR(h $\rightarrow \tau \tau, \mathrm{bb})$
ξ	t	b / τ	W/Z	
h	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\sin (\alpha-\beta)$	
H	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos (\alpha-\beta)$	
A	$\cot \beta$	$\tan \beta$	-----	

$\alpha=$ mixing btw. CP-even neutral Higgs bosons

Parameters used for Generation

- Mass of Heavy Higgs = $400,600 \& 800 \mathrm{GeV}$
- Mass of SM Higgs = 125 GeV
- Mass of top quark = 174.3 GeV
- Energy = 13 TeV
- LHAPDF set $=$ CT10 LHAPDF ID $=10800$
- Cross section:

For $\mathrm{mH}=400 \mathrm{GeV}$, $\mathrm{xsec}=$
$1.578 \pm 0.02 \mathrm{pb}$
For $\mathrm{mH}=800 \mathrm{GeV}$, xsec
$=0.3068 \pm 9.25 \mathrm{e}^{-5} \mathrm{pb}$

- Model = topBSM
- Applied cuts:
- Pt of jets $\geq 20 \mathrm{GeV}$
- Charged lepton pt ≥ 10 GeV
- $\operatorname{Dr}(\mathrm{j}, \mathrm{j}) \geq 0.4$
$-\operatorname{Dr}(\mathrm{I}, \mathrm{I}) \geq 0.4$
- $\operatorname{Dr}(\mathrm{j}, \mathrm{l}) \geq 0.4$
- No. of events $=2$ million
- All plots are scaled to 1

[^0]: Abstract
 The feasibility of the search for a heavy charged MSSM Higgs boson through $g b \rightarrow H^{ \pm} t$ production process is presented. The full production and decay chain studied is $g b \rightarrow H^{ \pm} t \rightarrow\left(h W^{ \pm}\right)\left(b W^{+}\right) \rightarrow$ $(b \bar{b})(j j)\left(b l \nu_{l}\right)$. The analysis is performed using CMS proton proton collision simulation at $\sqrt{s}=8$ TeV. The study shows that it is not feasible to do this search with $19.7 \mathrm{fb}^{-1}$ of LHC taken at $\sqrt{s}=8$ TeV .

