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Figure: Sketch of the QCD phase diagram.
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µ = 0 and finite T : lattice QCD (LQCD), effective models
(NJL, LSM) and experiments (LHC, RHIC).

T = 0 and finite µ: effective models and neutron stars.

First order phase transition → crossover ⇒ critical end point
(CEP).

Where is it? Answer might come from measure of quark
number susceptibility (experimental), or cumulants of pressure
(theoretical).
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Effective models: in order to analyze compressed strongly
interacting matter one should, at first, include vector channels
[1, 2].

Easily implemented in the NJL model: add a term such as
−GV (ψ̄γµψ)2 to the original lagrangian density.

However, GV should be fixed using the ρ meson mass which,
in general, is higher than the maximum energy scale set by
the Λ cutoff. It cannot be determined from experiments and
lattice QCD simulations and, theoretically, there is absolutely
no consense about its fixation.
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So, it would be convenient not to need an explicit imposition
of such vectorial term.

However, due to the Fierz identities, when going beyond
mean field approximation (MFA) level one may induce
quantum (loop) corrections which mimic the physical
effects caused by a classical (tree) term such as
−GV (ψ̄γµψ)2.
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This can come from the nonperturbative Optimized
Perturbation Theory (OPT) method applied to the two flavor
NJL model with vanishing GV .

OPT ' MFA + GV . Advantages: more loops calculated
(more powerful method) and one doesn’t need to fix GV .

OPT has been successful in Bose-Einstein condensation,
evaluation of the critical density for polyacetylene, success in
predicting QCD thermodynamical properties at the three-loop
level, etc.
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The Nambu–Jona-Lasinio Model and its effective
potential

Here we discuss the standard two flavor NJL model for quark
matter.

The respective lagrangian density can be written as [4]

LNJL = ψ̄
(
i /∂ − m̂0

)
ψ + GS

[(
ψ̄ψ
)2

+
(
ψ̄iγ5τψ

)2
]
, (1)

where ψ (sum over flavor and colour degrees of freedom is
implicit) represents a isodoublet in flavor (u, d) and a Nc -plet
quark field (Nc is the number of colors), τ are the Pauli
matrices and GS represents the scalar coupling strength.



Finite N corrections to the second order cumulant of pressure via the Optimized Perturbation Theory on the Nambu–Jona-Lasinio model

The Nambu–Jona-Lasinio Model and its effective potential

The Nambu–Jona-Lasinio Model and its effective
potential

Here we discuss the standard two flavor NJL model for quark
matter.

The respective lagrangian density can be written as [4]

LNJL = ψ̄
(
i /∂ − m̂0

)
ψ + GS

[(
ψ̄ψ
)2

+
(
ψ̄iγ5τψ

)2
]
, (1)

where ψ (sum over flavor and colour degrees of freedom is
implicit) represents a isodoublet in flavor (u, d) and a Nc -plet
quark field (Nc is the number of colors), τ are the Pauli
matrices and GS represents the scalar coupling strength.



Finite N corrections to the second order cumulant of pressure via the Optimized Perturbation Theory on the Nambu–Jona-Lasinio model

The Nambu–Jona-Lasinio Model and its effective potential

The Nambu–Jona-Lasinio Model and its effective
potential

Here we discuss the standard two flavor NJL model for quark
matter.

The respective lagrangian density can be written as [4]

LNJL = ψ̄
(
i /∂ − m̂0

)
ψ + GS

[(
ψ̄ψ
)2

+
(
ψ̄iγ5τψ

)2
]
, (1)

where ψ (sum over flavor and colour degrees of freedom is
implicit) represents a isodoublet in flavor (u, d) and a Nc -plet
quark field (Nc is the number of colors), τ are the Pauli
matrices and GS represents the scalar coupling strength.



Finite N corrections to the second order cumulant of pressure via the Optimized Perturbation Theory on the Nambu–Jona-Lasinio model

The Nambu–Jona-Lasinio Model and its effective potential

The Nambu–Jona-Lasinio Model and its effective
potential

The whole thermodynamics of an effective model comes from
its Landau’s free energy, or the effective potential. To
calculate it, one can use the path intgral formalism.

Within this approach the partition function, Z, can be written
in terms of the effective potential as follows (for details see
Refs. [5, 1]):

Z = exp

[
−i
∫

d4xF
]
. (2)

Then, as within statistical mechanics, all the relevant
thermodynamical quantities, such as the pressure, can easily
be obtained once the free energy (or the partition function) is
known.
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The Nambu–Jona-Lasinio Model and its effective
potential

It is convenient to write down the Lagrangian density in terms
of the auxiliary fields, σ and π, by using the
Hubbard-Stratanovich transformation,

LNJL = ψ̄
(
i /∂ −m0

)
ψ − 1

4GS

(
σ2 + π2

)
− ψ̄ [σ + iγ5π · τ ]ψ.

(3)
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The interpolated model

To implement the OPT approximation, we modify the
Lagrangian of a particular theory by introducing a dummy
expansion parameter, δ.

L (δ) = (1− δ)L0 + δL = L0 + δ (L − L0) . (4)

L be the original Lagrangian density we want to solve, and L0

a Lagrangian density of a free theory.
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One can fix the arbitrary mass parameter η by requiring that
any physical quantity P (η), be at least locally η-independent.
This optimization criterion translates into the following
variational condition

∂P (η)

∂η

∣∣∣∣
η̄

= 0, (5)

which is known as the principle of minimal sensitivity (PMS).
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Then, following the OPT interpolation prescription, on the
NJL model it gets

LNJL (δ) =ψ̄
(
i /∂ −m0 − η

)
ψ

+ δ

[
ηψ̄ψ − 1

4GS

(
σ2 + π2

)
−
(
σψ̄ψ + ψ̄iγ5π · τψ

)]
.

(6)
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To order δ, the effective potential is given by the these
Feynman diagrams:

Figure: Diagrams contributing to F (η̂)
at order δ. The thick continuous lines
represent the OPT dressed fermionic
propagators, the dashed line represents
the σ propagator and the dashed-dotted
line represents the π propagator.
(Figure taken from Ref. [2]).
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Applying the Feynman rules one then obtains, in finite
temperature and chemical potential,

F (η, σ, µ,T ) =
σ2

4GS
− 2NfNc I1 + 2δNfNc (η + m0) (η − σ) I2

+ 4δGSNfNc I
2
3 − 2δGSNfNc (η + m0)2 I 2

2 ,
(7)

where
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I1 =

∫
d3p

(2π)3

{
Ep +

1

β
ln
[
1 + e−β(Ep+µ)

]
+

1

β
ln
[
1 + e−β(Ep−µ)

]}
,

(8)

I2 =

∫
d3p

(2π)3

1

Ep

[
1− f + − f −

]
(9)

I3 =

∫
d3p

(2π)3

[
f + − f −

]
, (10)

where E 2
p = p2 + (η + m0)2 is the dispersion while

f + =
1

eβ(Ep−µ) + 1
, f − =

1

eβ(Ep+µ) + 1
, (11)

represent the fermion distribution functions for particles and
antiparticles respectively.
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There is a family of parameter sets tailored to reproduce the
numerical values of these physical observables, respecting
M = m0 + Σ ' 330 MeV, where Σ represents the self energy.
The parameter sets adopted in this work are given in table 1.

Table: Parameter set for the OPT and for the MFA approximation
as given in Ref. [2]. These values were obtained to reproduce

mπ = 135 MeV, fπ = 92.4 MeV and −
〈
ψ̄ψ
〉1/3

= 250 MeV.

Λ [MeV] m0 [MeV] GSΛ2

OPT 640 4.9 1.99
MFA 640 5.2 2.14
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Repulsive vector interaction in the NJL model

Within the NJL model such a term can be of the form
−GV

(
ψ̄γµψ

)2
with GV > 0 describing repulsion which is the

case here and GV < 0 describing attraction. Then the
standard NJL lagrangian density becomes

LV = ψ̄
(
i /∂ − m̂0

)
ψ + GS

[(
ψ̄ψ
)2

+
(
ψ̄iγ5τψ

)2
]
− GV

(
ψ̄γµψ

)2
,

(12)

and the effective potential in the MFA approximation reads [1]

FGV
MFA =

σ2

4GS
− 2NfNc I1 (µ̃,T )− 4GVN

2
f N

2
c I

2
3 (µ̃,T ) , (13)
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Fukushima [3] has shown that the combined effect of µ̃ and
−4GVN

2
cN

2
f I

2
3 in the above equation is to produce a net effect

similar to +4GVN
2
cN

2
f I

2
3 .

This interesting result allows us to better understand the type
of 1/Nc contributions radiatively generated by the OPT.

An inspection of Eq. (7) reveals that this approximation
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Figure: Phase diagram in the T–µ plane
for the NJL model. MFA with GV = 0,
circle; MFAGV with GV = GS/(NfNc),
triangle; OPT, square.
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As we have just shown the OPT seems to reproduce the same
effects without the need to explicitly introduce such a term
(and one more parameter!) at the tree level.

So, the OPT can be seen as a powerful alternative to
investigate the low-T/high-µ part of the QCD phase diagram
which is currently non-accessible to the LQCD simulations.
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Second order cumulant of the pressure

Once the pressure has been evaluated within a given model
approximation the coefficients can be obtained from

cn (T ) =
1

n!

∂nP (T , µ) /T 4

∂ (µ/T )n

∣∣∣∣
µ=0

. (17)

Nowadays the evaluation of these cumulants is receiving a lot
of attention from LQCD researchers and the considerable
amount of data already available can be used to check the
reliability of other non-perturbative techniques such as the
OPT and the MFA approximation.
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Figure 4 and 6 show the coefficient c2 obtained respectively
with the OPT and with Gv 6= 0, both compared to the pure
large-N approximation for the NJL model.
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Figure: Taylor expansion coefficient c2

as a function of T/Tσ obtained with
the MFA approximation (continuous
line) and with the OPT (dashed line).
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Figure: Taylor expansion coefficient c2

as a function of T/Tσ obtained for the
MFA approximation with GV = 0
(continuous line) and GV 6= 0 (dotted
line).
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We can see from the figures that the improvements do not
behave as expected, since the value of c2 is decreasing for
T > Tσ and is moving away from the Stefan–Boltzmann
limit, which takes place at sufficiently high temperatures when
the thermal fluctuations overcome the interparticle
interactions and the system behaves as a free gas.

The cumulants can be identified with the quark number
susceptibilities via

χn

T 2
= n!cn(T ) . (18)
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Conclusions

Conclusions

The main source of this behavior at T > Tσ is the medium
term that appears in Eqs. like 7, for both OPT and the
Gv 6= 0 case. This integral goes to highly negative values at
high temperatures, and because of the pure large-N limit does
not take it into account, the Stefan-Boltazmann limit is
reached in this approximation.
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Entangled Polyakov-loop extended Nambu–Jona-Lasinio
model (EPNJL):
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Figure: Taylor expansion coefficient c2

as a function of T/Tσ obtained for the
EPNJL model with OPT.
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