Finite N corrections to the second order cumulant of pressure via the Optimized Perturbation Theory on the Nambu–Jona-Lasinio model

Gabriel Neves Ferrari Universidade Federal de Santa Catarina (UFSC)

ICTP-NCP School on LHC Physics, Islamabad - Pakistan

 $22^{\rm th}$ November 2014

200

Índice

Introduction

- 2 The Nambu–Jona-Lasinio Model and its effective potential
 - The interpolated model
 - Repulsive vector interaction in the NJL model
- 3 Results at finite temperature and zero density for the second order cumulant of the pressure

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

4 Conclusions

5 References

6 The End

Florianópolis (Floripa) - Brazil

Florianópolis (Floripa) - Brazil

Florianópolis (Floripa) - Brazil

0

Introduction

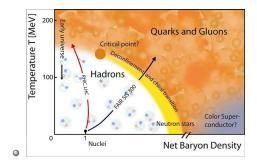


Figure: Sketch of the QCD phase diagram.

ヘロト 人間 ト 人 田 ト 人 田 ト

3

500

Introduction

• $\mu = 0$ and finite T: lattice QCD (LQCD), effective models (NJL, LSM) and experiments (LHC, RHIC).

Introduction

• T = 0 and finite μ : effective models and neutron stars.

Introduction

• First order phase transition \rightarrow crossover \Rightarrow critical end point (CEP).

Introduction

 Where is it? Answer might come from measure of quark number susceptibility (experimental), or cumulants of pressure (theoretical).

Introduction

• Effective models: in order to analyze compressed strongly interacting matter one should, at first, include vector channels [1, 2].

Introduction

• Effective models: in order to analyze compressed strongly interacting matter one should, at first, include vector channels [1, 2].

• Easily implemented in the NJL model: add a term such as $-G_V (\bar{\psi}\gamma^\mu\psi)^2$ to the original lagrangian density.

Introduction

- Effective models: in order to analyze compressed strongly interacting matter one should, at first, include vector channels [1, 2].
- Easily implemented in the NJL model: add a term such as $-G_V (\bar{\psi}\gamma^\mu\psi)^2$ to the original lagrangian density.
- However, G_V should be fixed using the ρ meson mass which, in general, is higher than the maximum energy scale set by the Λ cutoff. It cannot be determined from experiments and lattice QCD simulations and, theoretically, there is absolutely no consense about its fixation.

Introduction

• So, it would be convenient not to need an explicit imposition of such vectorial term.

Introduction

- So, it would be convenient not to need an explicit imposition of such vectorial term.
- However, due to the Fierz identities, when going beyond mean field approximation (MFA) level one may induce quantum (loop) corrections which mimic the physical effects caused by a classical (tree) term such as $-G_V(\bar{\psi}\gamma^\mu\psi)^2$.

Introduction

• This can come from the nonperturbative Optimized Perturbation Theory (OPT) method applied to the two flavor NJL model with vanishing *G_V*.

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Introduction

- This can come from the nonperturbative Optimized Perturbation Theory (OPT) method applied to the two flavor NJL model with vanishing *G_V*.
- OPT \simeq MFA + G_V . Advantages: more loops calculated (more powerful method) and one doesn't need to fix G_V .

Introduction

- This can come from the nonperturbative Optimized Perturbation Theory (OPT) method applied to the two flavor NJL model with vanishing *G_V*.
- OPT \simeq MFA + G_V . Advantages: more loops calculated (more powerful method) and one doesn't need to fix G_V .
- OPT has been successful in Bose-Einstein condensation, evaluation of the critical density for polyacetylene, success in predicting QCD thermodynamical properties at the three-loop level, etc.

The Nambu–Jona-Lasinio Model and its effective potential

 Here we discuss the standard two flavor NJL model for quark matter.

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

The Nambu–Jona-Lasinio Model and its effective potential

- Here we discuss the standard two flavor NJL model for quark matter.
- The respective lagrangian density can be written as [4]

$$\mathcal{L}_{NJL} = \bar{\psi} \left(i \partial \!\!\!/ - \hat{m}_0 \right) \psi + \mathcal{G}_{\mathcal{S}} \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \tau \psi \right)^2 \right], \quad (1)$$

The Nambu–Jona-Lasinio Model and its effective potential

- Here we discuss the standard two flavor NJL model for quark matter.
- The respective lagrangian density can be written as [4]

$$\mathcal{L}_{NJL} = \bar{\psi} \left(i \partial \!\!\!/ - \hat{m}_0 \right) \psi + \mathcal{G}_{\mathcal{S}} \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \boldsymbol{\tau} \psi \right)^2 \right], \quad (1)$$

• where ψ (sum over flavor and colour degrees of freedom is implicit) represents a isodoublet in flavor (u, d) and a N_c -plet quark field (N_c is the number of colors), τ are the Pauli matrices and G_S represents the scalar coupling strength.

The Nambu–Jona-Lasinio Model and its effective potential

• The whole thermodynamics of an effective model comes from its Landau's free energy, or the effective potential. To calculate it, one can use the path intgral formalism.

The Nambu–Jona-Lasinio Model and its effective potential

- The whole thermodynamics of an effective model comes from its Landau's free energy, or the effective potential. To calculate it, one can use the path intgral formalism.
- Within this approach the partition function, Z, can be written in terms of the effective potential as follows (for details see Refs. [5, 1]):

$$\mathcal{Z} = \exp\left[-i\int d^4x \mathcal{F}\right].$$
 (2)

The Nambu–Jona-Lasinio Model and its effective potential

- The whole thermodynamics of an effective model comes from its Landau's free energy, or the effective potential. To calculate it, one can use the path intgral formalism.
- Within this approach the partition function, Z, can be written in terms of the effective potential as follows (for details see Refs. [5, 1]):

$$\mathcal{Z} = \exp\left[-i\int d^4x \mathcal{F}\right].$$
 (2)

• Then, as within statistical mechanics, all the relevant thermodynamical quantities, such as the pressure, can easily be obtained once the free energy (or the partition function) is known.

The Nambu–Jona-Lasinio Model and its effective potential

 It is convenient to write down the Lagrangian density in terms of the auxiliary fields, σ and π, by using the Hubbard-Stratanovich transformation,

The Nambu–Jona-Lasinio Model and its effective potential

 It is convenient to write down the Lagrangian density in terms of the auxiliary fields, σ and π, by using the Hubbard-Stratanovich transformation,

$$\mathcal{L}_{NJL} = \bar{\psi} \left(i \partial - m_0 \right) \psi - \frac{1}{4G_S} \left(\sigma^2 + \pi^2 \right) - \bar{\psi} \left[\sigma + i \gamma_5 \pi \cdot \tau \right] \psi.$$
(3)

The interpolated model

• To implement the OPT approximation, we modify the Lagrangian of a particular theory by introducing a dummy expansion parameter, δ .

The interpolated model

• To implement the OPT approximation, we modify the Lagrangian of a particular theory by introducing a dummy expansion parameter, δ .

۲

$$\mathcal{L}(\delta) = (1 - \delta) \mathcal{L}_0 + \delta \mathcal{L} = \mathcal{L}_0 + \delta (\mathcal{L} - \mathcal{L}_0).$$
(4)

The interpolated model

• To implement the OPT approximation, we modify the Lagrangian of a particular theory by introducing a dummy expansion parameter, δ .

۲

$$\mathcal{L}(\delta) = (1 - \delta) \mathcal{L}_{0} + \delta \mathcal{L} = \mathcal{L}_{0} + \delta \left(\mathcal{L} - \mathcal{L}_{0}\right).$$
(4)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 L be the original Lagrangian density we want to solve, and L₀ a Lagrangian density of a free theory.

The interpolated model

• One can fix the arbitrary mass parameter η by requiring that any physical quantity $\mathcal{P}(\eta)$, be at least locally η -independent. This optimization criterion translates into the following variational condition

$$\frac{\partial \mathcal{P}(\eta)}{\partial \eta}\Big|_{\bar{\eta}} = 0, \tag{5}$$

The interpolated model

• One can fix the arbitrary mass parameter η by requiring that any physical quantity $\mathcal{P}(\eta)$, be at least locally η -independent. This optimization criterion translates into the following variational condition

$$\frac{\partial \mathcal{P}(\eta)}{\partial \eta}\Big|_{\bar{\eta}} = 0, \tag{5}$$

The interpolated model

• One can fix the arbitrary mass parameter η by requiring that any physical quantity $\mathcal{P}(\eta)$, be at least locally η -independent. This optimization criterion translates into the following variational condition

$$\left. \frac{\partial \mathcal{P}(\eta)}{\partial \eta} \right|_{\bar{\eta}} = 0, \tag{5}$$

• which is known as the principle of minimal sensitivity (PMS).

The interpolated model

• Then, following the OPT interpolation prescription, on the NJL model it gets

$$\mathcal{L}_{NJL}(\delta) = \bar{\psi} \left(i \partial \!\!\!/ - m_0 - \eta \right) \psi + \delta \left[\eta \bar{\psi} \psi - \frac{1}{4G_S} \left(\sigma^2 + \pi^2 \right) - \left(\sigma \bar{\psi} \psi + \bar{\psi} i \gamma_5 \pi \cdot \tau \psi \right) \right]$$
(6)

The interpolated model

• To order δ , the effective potential is given by the these Feynman diagrams:

Figure: Diagrams contributing to $\mathcal{F}(\hat{\eta})$ at order δ . The thick continuous lines represent the OPT dressed fermionic propagators, the dashed line represents the σ propagator and the dashed-dotted line represents the π propagator. (Figure taken from Ref. [2]).

The interpolated model

• Applying the Feynman rules one then obtains, in finite temperature and chemical potential,

The interpolated model

 Applying the Feynman rules one then obtains, in finite temperature and chemical potential,

 $\mathcal{F}(\eta, \sigma, \mu, T) = \frac{\sigma^2}{4G_S} - 2N_f N_c I_1 + 2\delta N_f N_c (\eta + m_0) (\eta - \sigma) I_2$ $+ 4\delta G_S N_f N_c I_3^2 - 2\delta G_S N_f N_c (\eta + m_0)^2 I_2^2,$ (7)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where

۲

The interpolated model

The interpolated model

۲

$$I_{1} = \int \frac{d^{3}p}{(2\pi)^{3}} \left\{ E_{p} + \frac{1}{\beta} \ln \left[1 + e^{-\beta(E_{p} + \mu)} \right] + \frac{1}{\beta} \ln \left[1 + e^{-\beta(E_{p} - \mu)} \right] \right\}$$
(8)
$$I_{2} = \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{E_{p}} \left[1 - f^{+} - f^{-} \right]$$
(9)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

The interpolated model

The interpolated model

0

$$I_{1} = \int \frac{d^{3}p}{(2\pi)^{3}} \left\{ E_{p} + \frac{1}{\beta} \ln \left[1 + e^{-\beta(E_{p} + \mu)} \right] + \frac{1}{\beta} \ln \left[1 + e^{-\beta(E_{p} - \mu)} \right] \right\}$$
(8)

$$I_2 = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{E_p} \left[1 - f^+ - f^- \right]$$
(9)

۲

$$I_{3} = \int \frac{d^{3}p}{(2\pi)^{3}} \left[f^{+} - f^{-} \right], \qquad (10)$$

where $E_{
ho}^2 = {f p}^2 + (\eta + m_0)^2$ is the dispersion while

$$f^+ = rac{1}{e^{eta(E_{
ho}-\mu)}+1} \quad , \quad f^- = rac{1}{e^{eta(E_{
ho}+\mu)}+1}, \qquad (11)$$

represent the fermion distribution functions for particles and antiparticles respectively.

The interpolated model

• There is a family of parameter sets tailored to reproduce the numerical values of these physical observables, respecting $M = m_0 + \Sigma \simeq 330$ MeV, where Σ represents the self energy. The parameter sets adopted in this work are given in table 1.

The interpolated model

• There is a family of parameter sets tailored to reproduce the numerical values of these physical observables, respecting $M = m_0 + \Sigma \simeq 330$ MeV, where Σ represents the self energy. The parameter sets adopted in this work are given in table 1.

Table: Parameter set for the OPT and for the MFA approximation as given in Ref. [2]. These values were obtained to reproduce $m_{\pi} = 135$ MeV, $f_{\pi} = 92.4$ MeV and $-\langle \bar{\psi}\psi \rangle^{1/3} = 250$ MeV.

		Λ [MeV]	<i>m</i> ₀ [MeV]	$G_S \Lambda^2$
٢	OPT	640	4.9	1.99
	MFA	640	5.2	2.14

Repulsive vector interaction in the NJL model

• Within the NJL model such a term can be of the form $-G_V \left(\bar{\psi}\gamma_\mu\psi\right)^2$ with $G_V > 0$ describing repulsion which is the case here and $G_V < 0$ describing attraction. Then the standard NJL lagrangian density becomes

Repulsive vector interaction in the NJL model

• Within the NJL model such a term can be of the form $-G_V \left(\bar{\psi}\gamma_\mu\psi\right)^2$ with $G_V > 0$ describing repulsion which is the case here and $G_V < 0$ describing attraction. Then the standard NJL lagrangian density becomes

۲

$$\mathcal{L}_{V} = \bar{\psi} \left(i \partial \!\!\!/ - \hat{m}_{0} \right) \psi + G_{S} \left[\left(\bar{\psi} \psi \right)^{2} + \left(\bar{\psi} i \gamma_{5} \tau \psi \right)^{2} \right] - G_{V} \left(\bar{\psi} \gamma^{\mu} \psi \right)^{2},$$
(12)

Repulsive vector interaction in the NJL model

• Within the NJL model such a term can be of the form $-G_V \left(\bar{\psi}\gamma_\mu\psi\right)^2$ with $G_V > 0$ describing repulsion which is the case here and $G_V < 0$ describing attraction. Then the standard NJL lagrangian density becomes

۲

$$\mathcal{L}_{V} = \bar{\psi} \left(i \partial \!\!\!/ - \hat{m}_{0} \right) \psi + G_{S} \left[\left(\bar{\psi} \psi \right)^{2} + \left(\bar{\psi} i \gamma_{5} \tau \psi \right)^{2} \right] - G_{V} \left(\bar{\psi} \gamma^{\mu} \psi \right)^{2},$$
(12)

• and the effective potential in the MFA approximation reads [1]

Repulsive vector interaction in the NJL model

• Within the NJL model such a term can be of the form $-G_V \left(\bar{\psi}\gamma_\mu\psi\right)^2$ with $G_V > 0$ describing repulsion which is the case here and $G_V < 0$ describing attraction. Then the standard NJL lagrangian density becomes

۲

$$\mathcal{L}_{V} = \bar{\psi} \left(i \partial \!\!\!/ - \hat{m}_{0} \right) \psi + G_{S} \left[\left(\bar{\psi} \psi \right)^{2} + \left(\bar{\psi} i \gamma_{5} \tau \psi \right)^{2} \right] - G_{V} \left(\bar{\psi} \gamma^{\mu} \psi \right)^{2},$$
(12)

and the effective potential in the MFA approximation reads [1]

$$\mathcal{F}_{MFA}^{G_{V}} = \frac{\sigma^{2}}{4G_{S}} - 2N_{f}N_{c}I_{1}\left(\tilde{\mu}, T\right) - 4G_{V}N_{f}^{2}N_{c}^{2}I_{3}^{2}\left(\tilde{\mu}, T\right), \quad (13)$$

Repulsive vector interaction in the NJL model

• Fukushima [3] has shown that the *combined* effect of $\tilde{\mu}$ and $-4G_V N_c^2 N_f^2 I_3^2$ in the above equation is to produce a *net* effect similar to $+4G_V N_c^2 N_f^2 I_3^2$.

Repulsive vector interaction in the NJL model

- Fukushima [3] has shown that the *combined* effect of $\tilde{\mu}$ and $-4G_V N_c^2 N_f^2 I_3^2$ in the above equation is to produce a *net* effect similar to $+4G_V N_c^2 N_f^2 I_3^2$.
- This interesting result allows us to better understand the type of $1/N_c$ contributions radiatively generated by the OPT.

Repulsive vector interaction in the NJL model

- Fukushima [3] has shown that the *combined* effect of $\tilde{\mu}$ and $-4G_V N_c^2 N_f^2 I_3^2$ in the above equation is to produce a *net* effect similar to $+4G_V N_c^2 N_f^2 I_3^2$.
- This interesting result allows us to better understand the type of $1/N_c$ contributions radiatively generated by the OPT.

• An inspection of Eq. (7) reveals that this approximation generates a $+4G_V N_c^2 N_f^2 I_3^2$ term which is similar to the $+4G_S N_c N_f I_3^2$ term appearing in the OPT result.

Repulsive vector interaction in the NJL model

Repulsive vector interaction in the NJL model

$$\mathcal{F}_{MFA} \sim \frac{\sigma^2}{4G_S} - 2N_f N_c I_1 \tag{14}$$

Repulsive vector interaction in the NJL model

۲

0

Repulsive vector interaction in the NJL model

$$\mathcal{F}_{MFA} \sim \frac{\sigma^2}{4G_S} - 2N_f N_c I_1 \tag{14}$$

$$\mathcal{F}_{OPT} \sim \frac{\sigma^2}{4G_S} - 2N_f N_c I_1 + 4G_S N_f N_c I_3^2$$
(15)

Repulsive vector interaction in the NJL model

۲

0

Repulsive vector interaction in the NJL model

$$\mathcal{F}_{MFA} \sim \frac{\sigma^2}{4G_S} - 2N_f N_c I_1 \tag{14}$$

$$\mathcal{F}_{OPT} \sim \frac{\sigma^2}{4G_S} - 2N_f N_c I_1 + 4G_S N_f N_c I_3^2$$
 (15)

$$\mathcal{F}_{MFA}^{G_V} \sim \frac{\sigma^2}{4G_S} - 2N_f N_c I_1 + 4G_V N_f^2 N_c^2 I_3^2$$
(16)

 $\label{eq:Finite-N-corrections-to-the-second-order-cumulant-of-pressure-via-the-Optimized-Perturbation-Theory on the N-The-Nambu-Jona-Lasinio-Model and its effective potential$

Repulsive vector interaction in the NJL model

Repulsive vector interaction in the NJL model

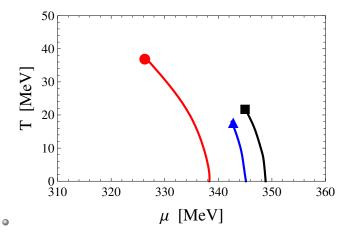


Figure: Phase diagram in the $T-\mu$ plane for the NJL model. MFA with $G_V = 0$, circle; MFA G_V with $G_V = G_S/(N_f N_c)$, triangle; OPT, square.

Repulsive vector interaction in the NJL model

• As we have just shown the OPT seems to reproduce the same effects without the need to explicitly introduce such a term (and one more parameter!) at the tree level.

Repulsive vector interaction in the NJL model

- As we have just shown the OPT seems to reproduce the same effects without the need to explicitly introduce such a term (and one more parameter!) at the tree level.
- So, the OPT can be seen as a powerful alternative to investigate the low- $T/high-\mu$ part of the QCD phase diagram which is currently non-accessible to the LQCD simulations.

Second order cumulant of the pressure

• Once the pressure has been evaluated within a given model approximation the coefficients can be obtained from

Second order cumulant of the pressure

۲

• Once the pressure has been evaluated within a given model approximation the coefficients can be obtained from

 $c_n(T) = \frac{1}{n!} \left. \frac{\partial^n P(T,\mu) / T^4}{\partial (\mu/T)^n} \right|_{\mu=0}.$ (17)

Second order cumulant of the pressure

• Once the pressure has been evaluated within a given model approximation the coefficients can be obtained from

۲

$$c_n(T) = \frac{1}{n!} \left. \frac{\partial^n P(T,\mu) / T^4}{\partial (\mu/T)^n} \right|_{\mu=0}.$$
 (17)

 Nowadays the evaluation of these cumulants is receiving a lot of attention from LQCD researchers and the considerable amount of data already available can be used to check the reliability of other non-perturbative techniques such as the OPT and the MFA approximation.

Second order cumulant of the pressure

• Figure 4 and 6 show the coefficient c_2 obtained respectively with the OPT and with $G_v \neq 0$, both compared to the pure large-N approximation for the NJL model.

Second order cumulant of the pressure

• Figure 4 and 6 show the coefficient c_2 obtained respectively with the OPT and with $G_v \neq 0$, both compared to the pure large-N approximation for the NJL model.

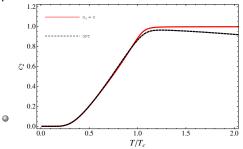


Figure: Taylor expansion coefficient c_2 as a function of T/T_{σ} obtained with the MFA approximation (continuous line) and with the OPT (dashed line).

Sac

Second order cumulant of the pressure

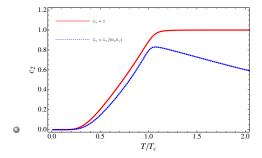


Figure: Taylor expansion coefficient c_2 as a function of T/T_{σ} obtained for the MFA approximation with $G_V = 0$ (continuous line) and $G_V \neq 0$ (dotted line).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Second order cumulant of the pressure

• We can see from the figures that the improvements do not behave as expected, since the value of c_2 is decreasing for $T > T_{\sigma}$ and is moving away from the Stefan-Boltzmann limit, which takes place at sufficiently high temperatures when the thermal fluctuations overcome the interparticle interactions and the system behaves as a free gas.

Second order cumulant of the pressure

- We can see from the figures that the improvements do not behave as expected, since the value of c_2 is decreasing for $T > T_{\sigma}$ and is moving away from the Stefan-Boltzmann limit, which takes place at sufficiently high temperatures when the thermal fluctuations overcome the interparticle interactions and the system behaves as a free gas.
- The cumulants can be identified with the quark number susceptibilities via

$$\frac{\chi_n}{T^2} = n! c_n(T) \,. \tag{18}$$

Conclusions

• Best methods, worse results. How? Why?

Conclusions

• Best methods, worse results. How? Why?

Conclusions

• Best methods, worse results. How? Why?

Hight T means vanishing G.

Conclusions

• The main source of this behavior at $T > T_{\sigma}$ is the medium term that appears in Eqs. like 7, for both OPT and the $G_{\nu} \neq 0$ case. This integral goes to highly negative values at high temperatures, and because of the pure large-N limit does not take it into account, the Stefan-Boltazmann limit is reached in this approximation.

Conclusions

 Entangled Polyakov-loop extended Nambu–Jona-Lasinio model (EPNJL):

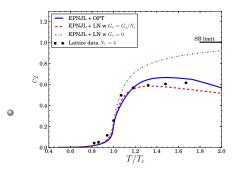


Figure: Taylor expansion coefficient c_2 as a function of T/T_{σ} obtained for the EPNJL model with OPT.

References

- M. Buballa, Phys. Rept. 407, 205 (2005).
 - K. Masuda, T. Hatsuda and T. Takatsuda, Prog. Ther. Exp. Phys., 073D01 (2013).
 - J. Steinheimer, S. Schramm, Phys.Lett. B **736** 241-245 (2014).
 - Nambu, Y. & Jona-Lasinio, Phys. Rev., American Physical Society, 1961, 122, 345-358
 - Kapusta, J. I., Finite-temperature field theory, Cambridge University Press, 1989

References

- Bailin, D. & Love, A. Brewer, D. F. Introduction to Gauge Field Theory, Taylor & Francis Group, 1993
 - Kneur, J.-L.; Pinto, M. B. & Ramos, R. O., Phys. Rev. C, American Physical Society, 2010, 81, 065205.
 - Fukushima, K., Phys. Rev. D, American Physical Society, 2008, 78, 114019

Swat Valley

آپ کا شکریہ _ہ

