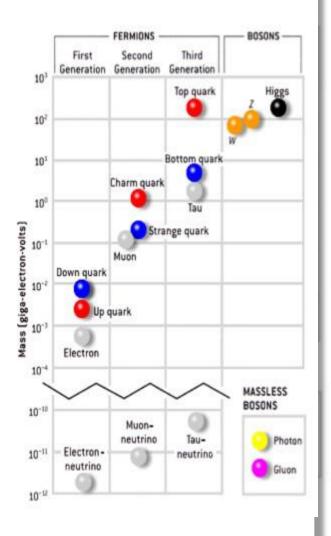
Production cross section Measurement of tqZ using CMS 2012 data

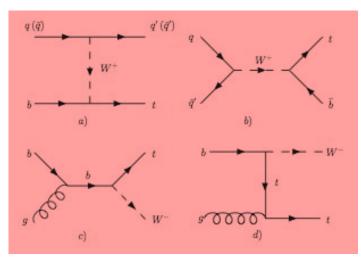
Outline


- Motivations
- **Top Quark**
- □ Analysis Introduction
- □ Analysis Cut Flow
- **D** Pileup
- Basic Plots
- Background Estimation
- **PAT vs AOD**
- □ Analysis Documentation
- **Gamma** Summary and Conclusion

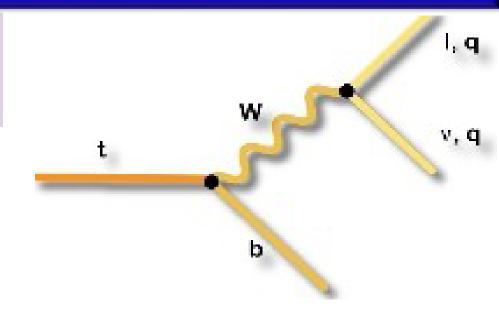
Motivations

- Plan to measure tqZ cross-section using 8 TeV, CMS data with 19.6 fb-1 Integrated Luminosity.
- tqZ is rare standard model process and it is irreducible background for ttbar and ttbar +Z, FCNC.
 - Measuring will confirm a predicted feature of the standard model and allow other analyses to include tqZ as a background.
 In LHC run-II, with more top statistic, we will also be able to study vector boson association with top.
- Analysis techniques are similar to SUSY multi-lepton analysis

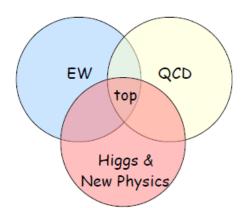
What is top quark


- □ The heaviest quark in the SM M ~ 172.4 GeV
- Mass near the electroweak
- symmetry breaking scale,
- has "natural" Yukawa coupling.
- Discovered in 1995.
- □ Charge of +2/3 and weak isospin of +1/2
- \Box Lifetime 5×10–25 s:
- ~20 times shorter then
 - time scale of strong int.
- decays before hadronization
- the spin information is kept
 - by its decay products
- Gives opportunity to study "bare" quark

Top quark

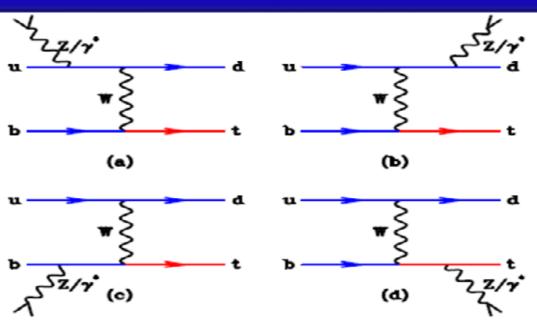

$$\left\{ egin{array}{l} Br(t
ightarrow bW^+) \simeq 0.998 \ Br(t
ightarrow sW^+) \simeq 0.0019 \ Br(t
ightarrow dW^+) \simeq 0.0001 \end{array}
ight.$$

Single top production:



Proceeds via weak interactions:

- exchange of virtual W in s and t channel
- associated production with real W



Life Time: 5 * 10 -25 sec

Analysis Introduction

- The single top + Z cross section is about the same size as the t⁻tZ one
- Cross section for ttbar+Z is ~ 0.2057
 - tbZ Cross-section mentioned on single top page ~ 0.0114 pb

 $\sigma. L = N$

Total events with this cross section and 19600 pb-1 integrated luminosity ~ 223

tqZ cross-section ~ 0.02450 pb Total events with this cross section and 19600 pb-1 integrated luminosity ~ 480

$$u + b \rightarrow t + Z + d$$

$$\mu^{-} + \mu^{+}$$

$$\nu + e^{+} + b$$

Analysis Framework

Developed AOD based analysis framework

- Run under CMSSW_5_3_21
- Have producers for all basic objects
- Cut flow about Muons and Electron implemented
- Plus analyzers for various tasks like final cut flow, top reconstruction
- Adapted some existing tools such as Pz calculation for MET (using W constrain)
- **Recommended MET filter incorporated.**
- □ Jet Energy Corrections(JEC) Type-I applied.
- □Now migrated to PAT formate

Event Selection

Tri-lepton final state.

- 🏶 euu
- 🛠 uuu

Two leptons should be same flavor and opposite charge.

Third lepton should be from top decay with neutrino (MET).

□One b-tag.

□ Light Jets should be more than 1.

Datasets

Data used:

CMS 2012 (ReReco 8 TeV) data: 19.7 fb-1 Lumi Double Electron Double Mu MuEG

> JSON file:

Cert_190456-208686_8TeV_22Jan2013ReReco_Collisions12_JSON.txt

Trigger

Trigger Applied

DoubleElectron

HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL

DoubleMu

HLT_Mu17_Mu8

HLT_Mu17_TkMu8

MuEG

HLT_Mu17_Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL HLT_Mu8_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL

MC Samples Used

SignalMC	/TZJetsTo3LNuB_8TeV_TuneZ2Star_madgraph_tauola/ [1]									
ttbarMC	/TTJets_MassiveBinDECAY_TuneZ2star_8TeV-madgraph-tauola/ [1]									
ttbarW	/TTWJets_8TeV-madgraph/ [1]									
ttbarZ	/TTZJets_8TeV-madgraph_v2/ [1]									
WZ (3l + Nu)	/WZJetsTo3LNu_TuneZ2_8TeV-madgraph-tauola/ [1]									
ZGamma	/ZGToLLG_8TeV-madgraph/ [1]									
Z + Jets	/DYJetsToLL_M-10To50filter_8TeV-madgraph/ [1]									
	/DYJetsToLL_M-50_TuneZ2Star_8TeV-madgraph-tarball/ [1]									
	/ZbbToLL_massive_M-50_TuneZ2star_8TeV-madgraph-pythia6_tauola/[1]									
WV	/WW_TuneZ2star_8TeV_pythia6_tauola/ [1]									
	/WGstarToLNu2E_TuneZ2star_8TeV-madgraph-tauola/ [1]									
	/WGstarToLNu2Mu_TuneZ2star_7TeV-madgraph-tauola/ [1]									
ZZ	/ZZTo4e_8TeV-powheg-pythia6/ [1]									
	/ZZTo4mu_8TeV-powheg-pythia6/ [1]									
	/ZZTo2e2mu_8TeV-powheg-pythia6/ [1]									

11/22/2014

Object Selection

□ Selection of objects (TOP-PAG recommendations):

Exactly three `tight' leptons, two of which must be oppositely charged, same flavour and invariant mass within the z mass window (78-102 GeV).

Devents with good vertex cuts: > Ndof>5, Z<24.0, rho()<2.0</pre>

□ Muon selection

Electron Selection

Jet & MET Selection

Muons Selection

Selection of tight Muons

- Global AND tracker muon
- Is also a PF Muon
- pt >= 20, |eta| <= 2.4
- chi2/ndf <10 && chi2/ndf > 0
- track()->hitPattern().trackerLayersWithMeasurement() > 5
- recoMu.globalTrack()->hitPattern().numberOfValidMuonHits() > 0
- Transverse IP of the muon wrt primary vertex (cm) < 0.02,
- fabs(muon.vertex.z() pv.z()) < 0.5
- muon.innerTrack()->hitPattern().numberOfValidPixelHits() > 0
- numberOfMatchedStations() > 1
- Rellso(dBeta) <= 0.20, cone of 0.4

Selection of loose Muons

- Global OR tracker muon
- pt >= 10, |eta| <= 2.4
- Rellso(dBeta) <= 0.20, cone of 0.4

Electron Selection

Selection of tight Electrons

- Gsf pt >= 20, Gsf |eta| <= 2.5 (Gsf == ecalDrivenMomentum)
- is both a PF and a GsF electron
- dxy(vertex) <=0.04 (fabs(electron.gsfTrack()->dxy(vertex_->position())))
- passes photon conversion veto electron.passConversionVeto()
- MVA ID >= 0.5 (mvaTrigV0)
- electron.gsfTrack()->trackerExpectedHitsInner().numberOfHits() <=0
- rellso (r=0.3) with Rho corrections < 0.15

Selection of loose Electrons

- Gsf pt >= 10, Gsf |eta| <= 2.5 (Gsf == ecalDrivenMomentum),
- MVA ID > 0,
- rellso (r=0.3) with Rho corrections < 0.15.

Jet and MET Selection

□ Jet selection: Official jet ID implemented

- PFJets with Jet pt> 20 GeV, eta< 3. and CVS disc < 0.679</p>
- neutralHadronEnergyFraction > 0.99
- chargedHadronEnergyFraction > 0
- neutralEmEnergyFraction > 0.99
- chargedEmEnergyFraction > 0.99
- Jetlso (j, l) < 0.3</p>

☐ Tag jet: CSV (Combined Secondary Vertex) disc > 0.679
> Eta<2.4, pt > 25 GeV, It's a Medium working point

□ MET: pFMET with 25 GeV MET Cut.

Cut Flow Table

	Dmu	DE	MuEG	tData	tMC	Signal	ttbar	ttbarW	ttbarZ	wz	ww	Zgamma	ZZ (2e2mu)	ZZ (4e)	ZZ (4mu)	Z Jets (Less 50)	Z Jets (Grtr 50)	Zbb	WGstarToL Nu2Mu	WGstarToL Nu2E
All events	1.00E+08	9.15E+07	5.64E+07	2.48E+08	9.33E+07	485.075	510876	4593.37	3445.03	20947.3	1.13E+06	2.63E+06	3498.48	1522.74	1522.74	1.70E+07	6.99E+07	1.86E+06	37895.3	116280
Dilepton Trigger	5.20E+07	2.14E+07	3.51E+07	1.08E+08	9.33E+07	485.075	510876	4593.37	3445.03	20947.3	1.13E+06	2.63E+06	3498.48	1522.74	1522.74	1.70E+07	6.99E+07	1.86E+06	37895.3	116280
Primary vertx cut	5.20E+07	2.14E+07	3.51E+07	1.08E+08	9.26E+07	484.665	510642	4591.82	3443.9	20859.6	1.13E+06	2.61E+06	3484.95	1516	1517.4	1.69E+07	6.94E+07	1.86E+06	37717.2	115610
tight leptons 3	316	297	7	620	803	20	1	4	9	464	0	18	56	30	23	0	30	4	7	136
elec 3 +Z + W(MET)	0	57	0	57	69	3	0	0	1	57	0	1	0	4	0	0	2	0	0	1
Muon 3 + Z + W(MET)	75	0	0	75	79	3	0	0	1	70	0	0	0	0	5	0	0	0	1	0
muons 2 + elec 1 + Z + W(MET)	54	0	2	56	68	2	0	0	1	58	0	0	5	0	0	0	2	0	0	0
muons 1+ elec 2 + Z + W(MET)	1	54	0	55	68	2	0	0	1	60	0	0	4	0	0	0	0	0	0	0
Elec 3 + Z + MET + 1b	0	2	0	2	4	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0
Muon 3 + Z + MET +1b	3	0	0	3	3	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Muon 2 + elec 1 + Z + MET +1b	3	0	0	3	3	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Muon 1 + elec 2 +Z + MET +1b	0	4	0	4	4	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0

Pileup

□ the additional interactions that occur in each beam crossing because the instantaneous bunch-by-bunch collision luminosity is very high.

"additional" implies that there is a hard-scatter interaction that has caused the event to fire the trigger.
end of 2011: ~15 interactions per crossing
End of 2012: as high as 40 interactions per crossing

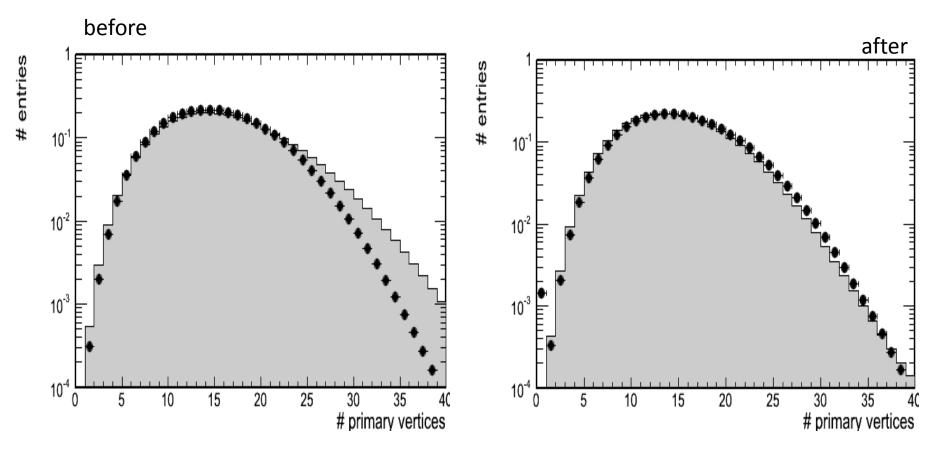
G"In-time pileup":

> the interactions that occur in the bunch crossing that fires the trigger

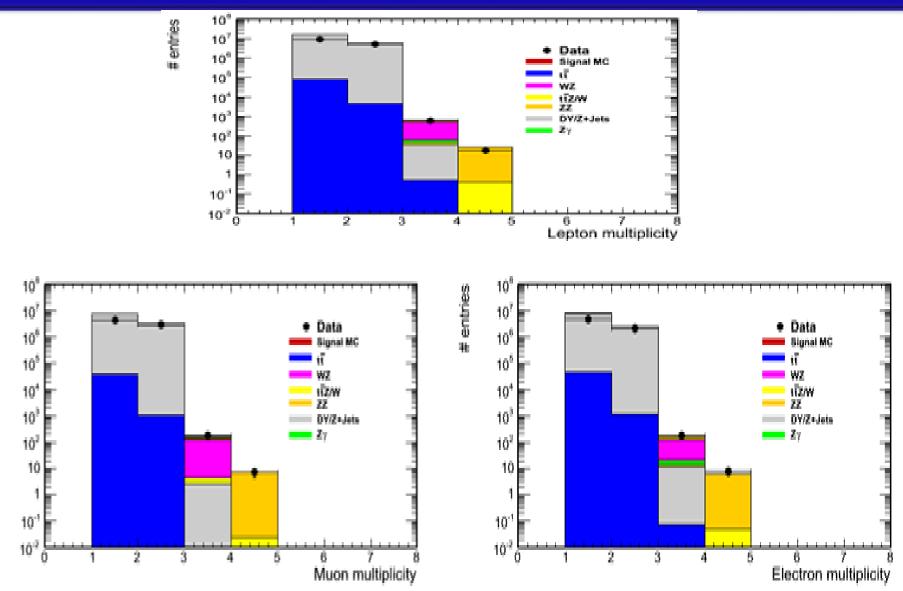
Pileup

Out-of-time pileup":

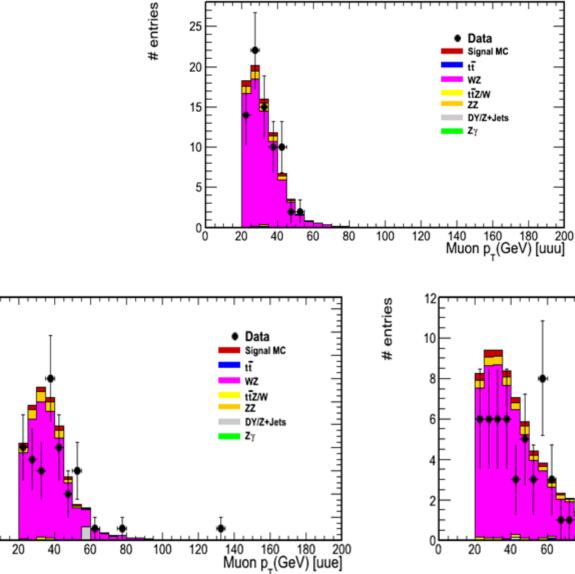
➤ the interactions that occur in bunch crossings earlier or later than the in-time interaction

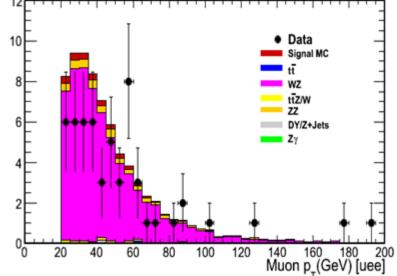

>depending on the integration time of the different CMS detector elements, these interactions can leave energy or tracks in the detector

Tracker: only sensitive to in-time pileup
 Calorimeters: sensitive to out-of-time pileup
 Muons: sensitive to out-of-time pileup

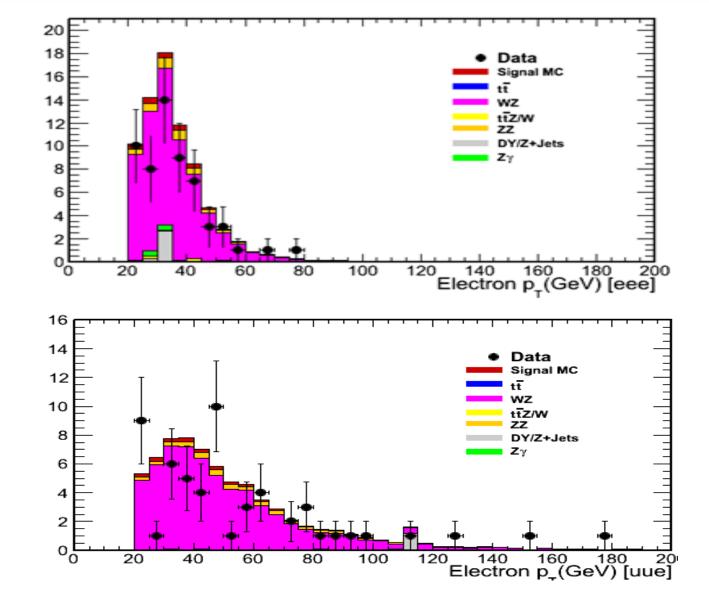

Pileup Reweighting

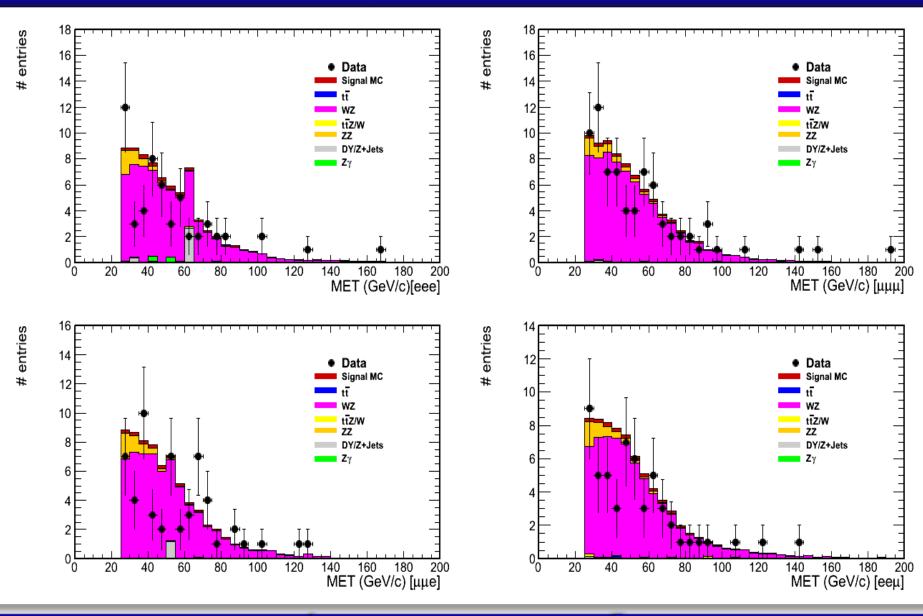
All used MC Samples produced using same scheme PU_S10

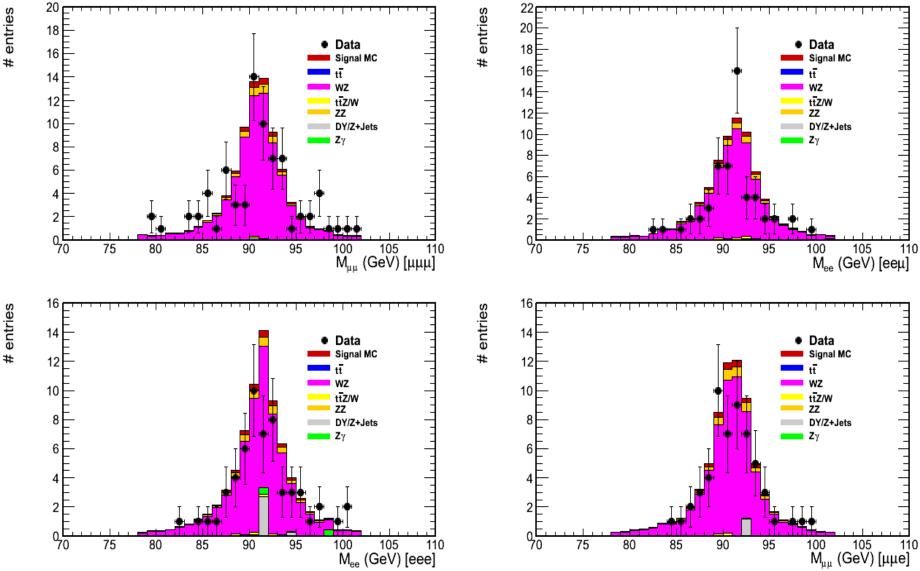

Weight for Pileup reweighting calculated using WZ MC sample



Leptons Multi

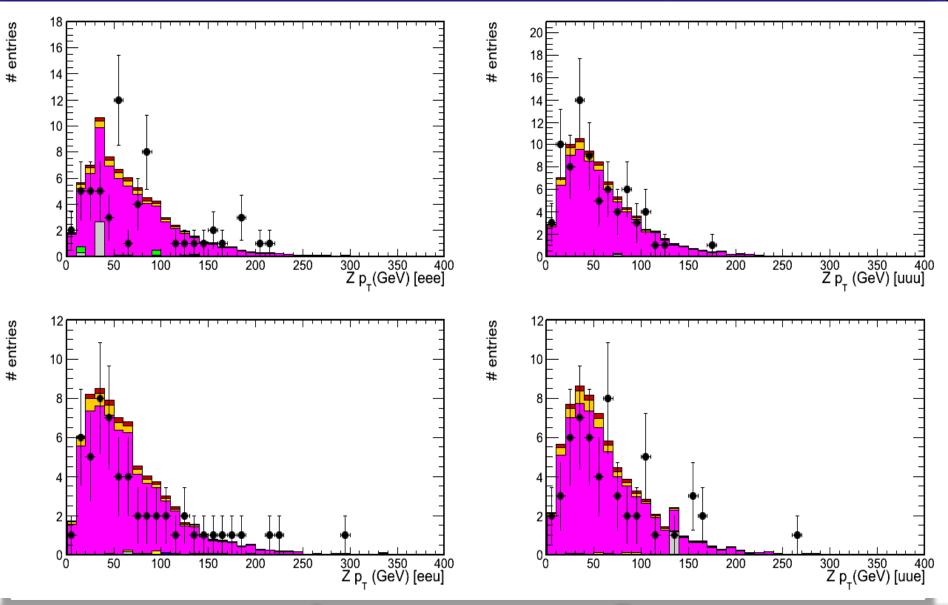

Muons Pt after Pre-selection


Electrons Pt after Pre-selection



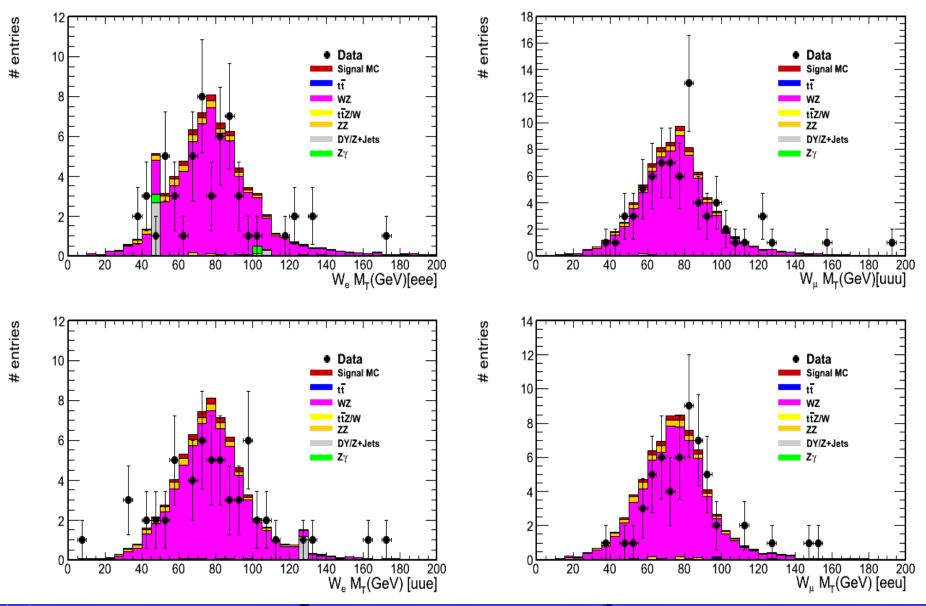
entries

MET after pre-selection



Z mass after pre-selection

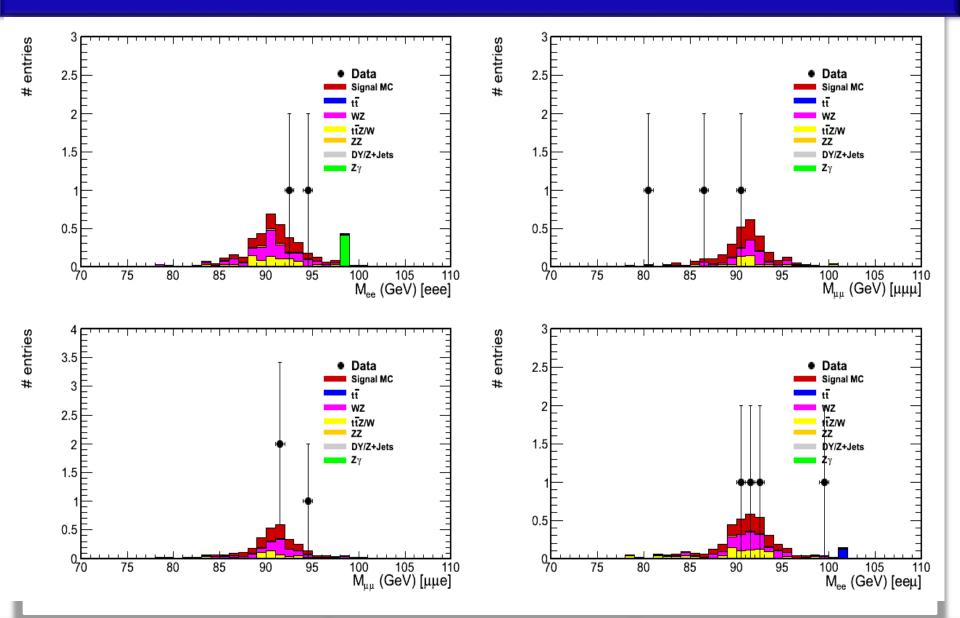
11/22/2014


Z Pt after pre-selection

11/22/2014

NCP-ICTP LHC School 2014

W transverse Mass in combinations

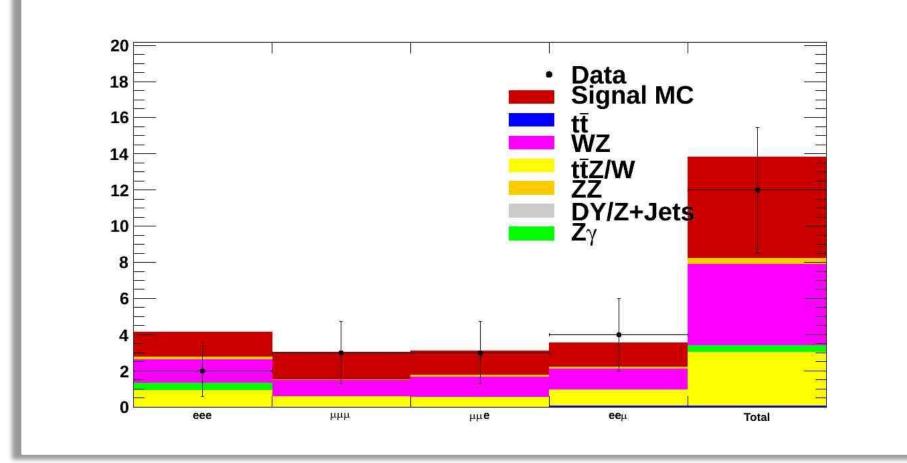


11/22/2014

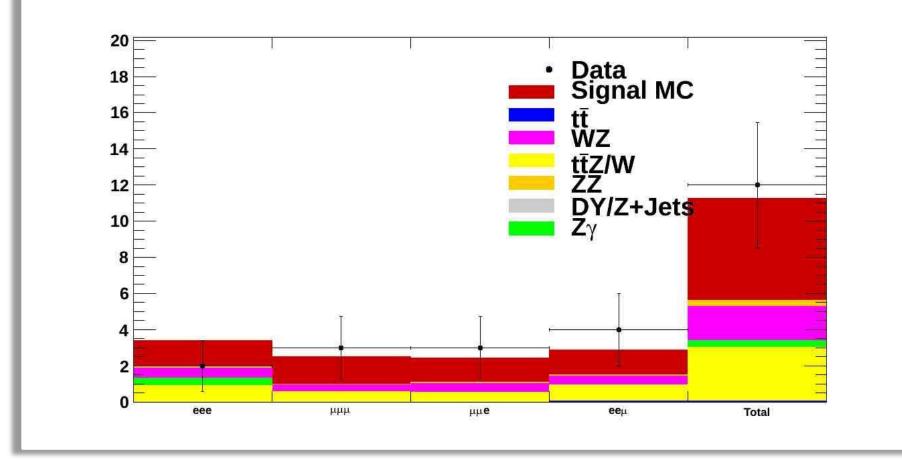
NCP-ICTP LHC School 2014

26

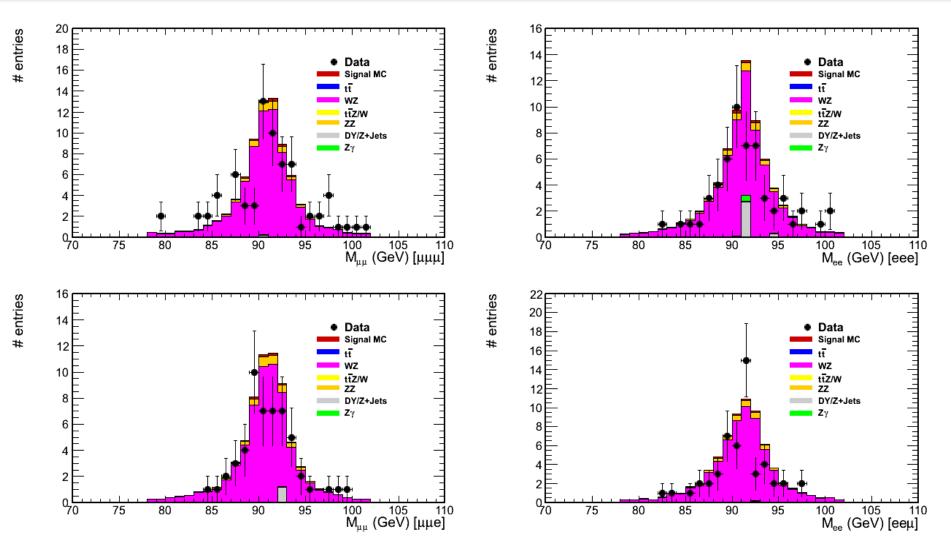
Di-Lepton Mass in Final Combinations

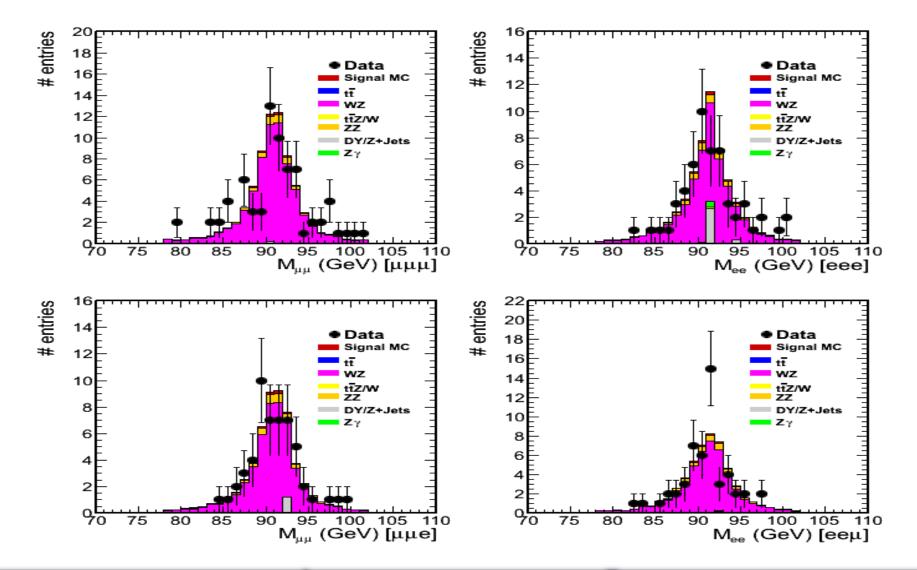


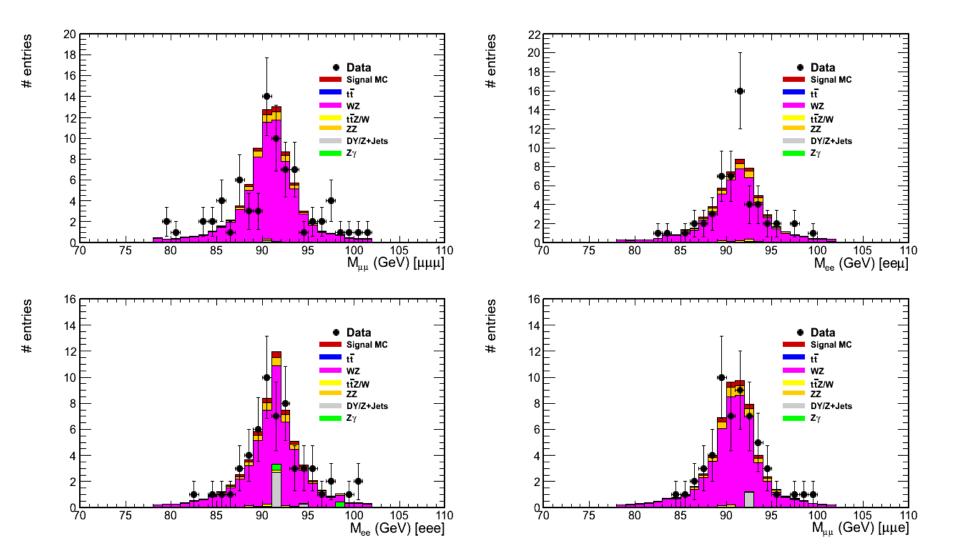
Background SF


- □ Main backgrounds: WZ, ttbar, ttarW, Z+Jets
- Plot Z mass for events with 0 bjets
- Calculate ratio of data and MC in Z mass window [78,101]
- Apply these scale factors to reweight dominant WZ MC in final plots/cutflow
- □ Can do the above bin-by-bin but that would over correct MC

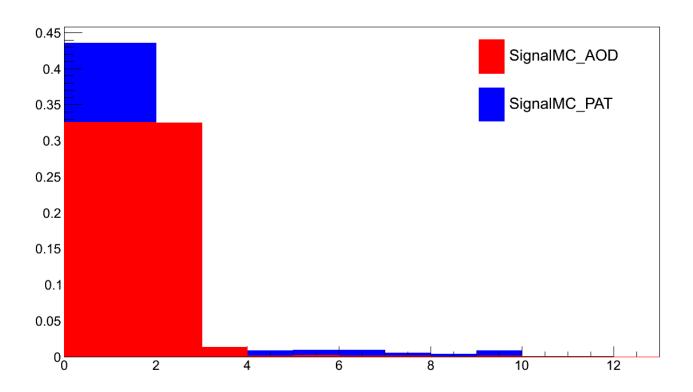
```
uue SF = 0. 788539
eeu SF = 0. 736197
ee e SF = 0. 780372
uuu SF = 0. 92914
```

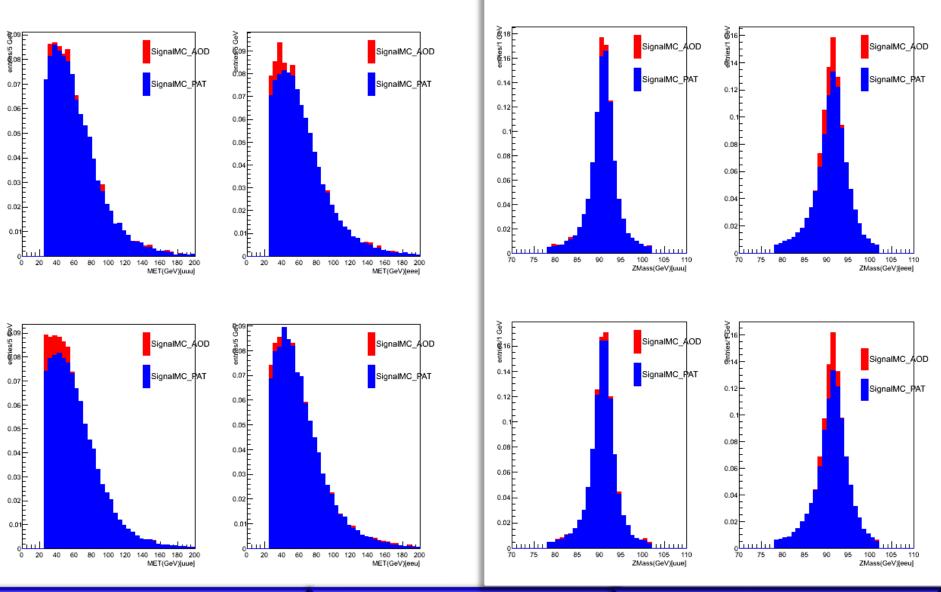

Without SF


With Background Scale (WZ)


Background Scale Factors (Plotting Z mass with 0 bjets)

Applying Scale Factors to WZ MC in background enriched mass plots


Applying Scale Factors to WZ MC in preselected mass plots


Basic Plots with PAT

□ Pat Tuple Produced using single top file

- >At least one tight lepton
- Light jet quarks >= 2

Basic Plots with PAT

Analysis Documentaion

□ Twiki page: all analysis strategy and updates

https://twiki.cern.ch/twiki/bin/view/Sandbox/SingleTopinAssociationofZboson

CMS Analysis Note:

➤ AN2014_182

Summary and Plan

- □ Validation plots after pre-selection shows reasonable agreement between data and MC
- **D** pileup reweighting applied
- □ Background SF have been calculated and Applied
- □ Pat tuple produced with single top file and basic plots with signal MC.
- □ Future plans
- □ AN2014-182 completion up to end of year
- Work on systematic
- □ Fake Rate Estimation

