Higgs-boson pair production in the D=6 extension of the SM

LHC Higgs X5
HH Subgroup Meeting

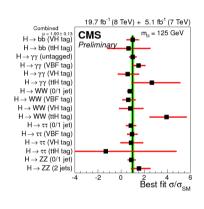
CERN, 8.12.2014

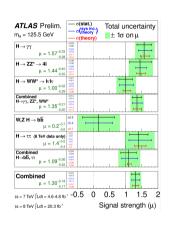
Florian Goertz
CERN

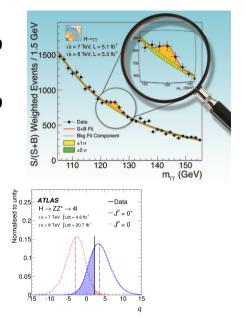
arXiv: 1410.3471 FG, Papaefstathiou, Yang, Zurita

Introduction

- Is it the SM-Higgs Boson?
 - · Scale of New Physics?







self couplings

Important test: Higgs potential
$$V(h) = \frac{1}{2} m_h^2 h^2 + \lambda_{hhh} v h^3 + \frac{1}{4} \lambda_{hhh} h^4$$
 self couplings
$$(D \le 4)$$

$$\lambda_{hhh}^{SM} = \lambda_{hhhh}^{SM} = \frac{m_h^2}{2v^2} \approx 0.13$$

9 00000000

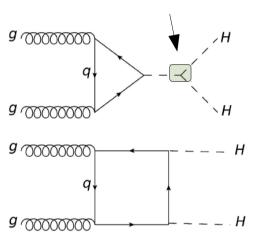
Measuring λ_{hhh}

Expected constraints on $\lambda \equiv \lambda_{hhh}/\lambda_{hhh}^{\rm SM}$ @LHC

• Simple approach: addition of a single D=6 operator $\leftrightarrow \lambda_{hhh} \neq \lambda_{hhh}^{\rm SM}$

Process	$600 \text{ fb}^{-1} (1\sigma)$	$3000 \text{ fb}^{-1} (1\sigma)$
$b\bar{b}\tau^+\tau^-$	(0.57, 1.64)	(0.69, 1.40)
$b\bar{b}W^+W^-$	(0.46, 1.95)	(0.65, 1.46)
$b ar{b} \gamma \gamma$	(0.09, 4.83)	(0.48, 1.87)

from FG, Papaefstathiou, Yang, Zurita, 1301.3492



- assumed $\lambda_{\rm true} = 1$
- Reduce error by employing ratio $C_{hh} = \frac{\sigma(gg \to hh)}{\sigma(gg \to h)} \equiv \frac{\sigma_{hh}}{\sigma_h}$

Combination yields ~ 30% accuracy with 3000 fb-1

Full Analysis: Higgs EFT

- Assume (unspecified) New Physics at a scale $\Lambda >> v$
- → leading effects: D=6 operators built of SM content

Buchmuller, Wyler, NPB 268(1986)621-653
Grzadkowski, Iskrzynski, Misiak, Rosiek, 1008.4884

Here:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6$$

$$- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right)$$

$$+ \frac{\alpha_s c_g}{4\pi \Lambda^2} |H|^2 G_{\mu\nu}^a G_a^{\mu\nu} + \frac{\alpha' c_\gamma}{4\pi \Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} + \mathcal{O}_{WW} \left(+\mathcal{L}_{CP} + \mathcal{L}_{4f} \right)$$

Neglected operators that are strongly constrained from precision tests

See e.g.: Elias-Miro, Espinosa, Masso, Pomarol, 1308.1879; Pomarol, Riva, 1308.2803; Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia 1207.1344, 1211.4580, 1304.1151; Falkowski, Riva, Urbano, 1303.1812; Contino, Ghezzi, Grojean, Muhlleitner, Spira, 1303.3876; Dumont, Fichet, von Gersdorff 1304.3369; Falkowski, Riva, 1411.0669, Trott 1409.7605, ...

For non-linear realization, see e.g. Grinstein, Trott 0704.1505; Contino, Grojean, Moretti, Piccinini, Rattazzi 1002.1011

 $\mathcal{O}_{WW} = \tilde{c}_{HW}(D^{\mu}H)^{\dagger}\sigma_{k}(D^{\nu}H)W_{\mu\nu}^{k} + \tilde{c}_{HB}(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu} + \tilde{c}_{W}(H^{\dagger}\sigma_{k}\overrightarrow{D}^{\mu}H)D^{\nu}W_{\mu\nu}^{k} + \tilde{c}_{B}(H^{\dagger}\overrightarrow{D}^{\mu}H)\partial^{\nu}B_{\mu\nu}$

Higgs Boson EFT

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \frac{c_H}{2\Lambda^2} (\partial^\mu |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \quad \text{Pure Higgs}$$
 Yukawa type
$$- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \mathrm{h.c.} \right)$$

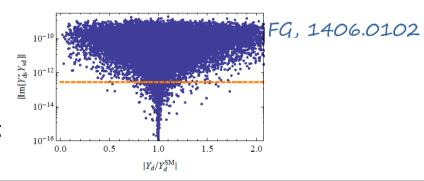
$$+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G_{\mu\nu}^a G_a^{\mu\nu} + \frac{\alpha' \, c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu}$$

Higgs Boson EFT

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \frac{c_H}{2\Lambda^2} (\partial^\mu |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \quad \text{Pure Higgs}$$
 Yukawa type
$$- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \mathrm{h.c.} \right)$$

$$+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G_{\mu\nu}^a G_a^{\mu\nu} + \frac{\alpha' \ c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu}$$

- · What about light-quark Yukawas
 - → can assume MFV, but even should be negligible on more general grounds: FCNCs

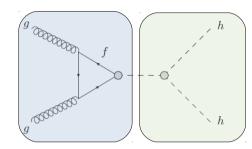


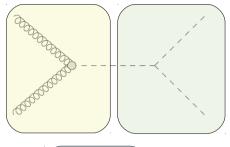
$99 \rightarrow hh$

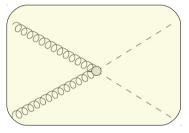
Relevant Terms:

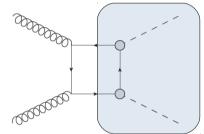
$$\mathcal{L}_{hh} = -\left[\frac{m_h^2}{2v}\left(1 - \frac{3}{2}c_H + c_6\right)h^3\right]$$

$$+\left[\frac{\alpha_s c_g}{4\pi} \left(\frac{h}{v} + \frac{h^2}{2v^2}\right) G^a_{\mu\nu} G^{\mu\nu}_a\right]$$



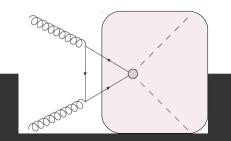






$$-\left[\frac{m_t}{v}\left(1-\frac{c_H}{2}+c_t\right)\bar{t}_L t_R h\right] + \text{h.c.}\right]$$

$$-\left[\frac{m_t}{v^2}\left(\frac{3c_t}{2}-\frac{c_H}{2}\right)\bar{t}_L t_R h^2\right] + \text{h.c.}\right]$$



$$c_i \to c_i \, \Lambda^2 / v^2$$

$$H = \exp\left(-i\frac{T\cdot\xi}{v}\right)\frac{1}{\sqrt{2}}\begin{pmatrix}0\\v+h\end{pmatrix}$$

$$h \to \left(1 - \frac{c_H v^2}{2\Lambda^2}\right) h - \frac{c_H v}{2\Lambda^2} h^2 - \frac{c_H}{6\Lambda^2} h^3$$

non-linear redefinition:

removes momentum-dependent interactions

Cross Section in SM (LO)

$$\frac{\mathrm{d}\hat{\sigma}(gg\to hh)}{\mathrm{d}\hat{t}} = \frac{G_F^2\alpha_s^2}{256(2\pi)^3} \left[|C_\triangle F_\triangle| + |C_\square F_\square|^2 + |C_\square G_\square|^2\right]$$

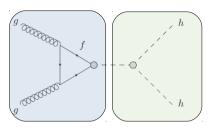
$$C_{\triangle} = \frac{3m_h^2}{\hat{s} - m_h^2}, \qquad C_{\square} = 1$$

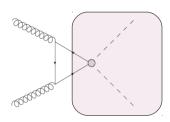
$$F_{\triangle} = \frac{2}{3} + \mathcal{O}(\hat{s}/m_Q^2), \quad F_{\square} = -\frac{2}{3} + \mathcal{O}(\hat{s}/m_Q^2),$$

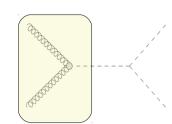
$$G_{\square} = \mathcal{O}(\hat{s}/m_Q^2)$$

See Plehn, Spira, Zerwas ph/9603205

Cross Section in D=6 EFT

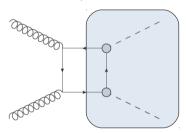


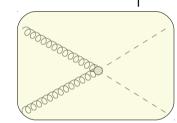




$$\frac{d\hat{\sigma}(gg \to hh)}{d\hat{t}} \bigg|_{\text{EFT}} = \frac{G_F^2 \alpha_s^2}{256(2\pi)^3} \bigg\{ \bigg| C_{\triangle} F_{\triangle} (1 - 2c_H + c_t + c_6) + 3F_{\triangle} (3c_t - c_H) + 2c_g C_{\triangle} \bigg\} \bigg\} \bigg|_{\text{EFT}} = \frac{G_F^2 \alpha_s^2}{256(2\pi)^3} \bigg\{ \bigg| C_{\triangle} F_{\triangle} (1 - 2c_H + c_t + c_6) + 3F_{\triangle} (3c_t - c_H) + 2c_g C_{\triangle} \bigg\} \bigg\} \bigg|_{\text{EFT}} = \frac{G_F^2 \alpha_s^2}{256(2\pi)^3} \bigg\{ \bigg| C_{\triangle} F_{\triangle} (1 - 2c_H + c_t + c_6) + 3F_{\triangle} (3c_t - c_H) + 2c_g C_{\triangle} \bigg\} \bigg\} \bigg|_{\text{EFT}} = \frac{G_F^2 \alpha_s^2}{256(2\pi)^3} \bigg\{ \bigg| C_{\triangle} F_{\triangle} (1 - 2c_H + c_t + c_6) + 3F_{\triangle} (3c_t - c_H) + 2c_g C_{\triangle} \bigg\} \bigg|_{\text{EFT}} \bigg\} \bigg|_{\text{EFT}} = \frac{G_F^2 \alpha_s^2}{256(2\pi)^3} \bigg\{ \bigg|_{\text{EFT}} G_{\triangle} (1 - 2c_H + c_t + c_6) + 3F_{\triangle} (3c_t - c_H) + 2c_g C_{\triangle} \bigg\} \bigg|_{\text{EFT}} \bigg|_{\text$$

$$+ C_{\square} F_{\square} (1 - c_H + 2c_t) + 2c_g C_{\square} \Big|^2 + \Big| C_{\square} G_{\square} \Big|^2 \Big\}$$





$$C_{\triangle} = \frac{3m_h^2}{\hat{s} - m_h^2}, \qquad C_{\square} = 1$$

$$F_{\triangle} = \frac{2}{3} + \mathcal{O}(\hat{s}/m_Q^2), \ F_{\square} = -\frac{2}{3} + \mathcal{O}(\hat{s}/m_Q^2),$$
$$G_{\square} = \mathcal{O}(\hat{s}/m_Q^2)$$

See Plehn, Spira, Zerwas ph/9603205

Implemented in MC generator Herwig++

Normalize to NNLO: de Florian, Mazzitelli, 1309.6594

Higgs Decays in D=6 EFT

Mode	tree	1 loop QCD	1 loop
h o bb	c_H, c_b	e_H, e_b	c_H, c_b, c_t, c_6, c_W
$h \to \tau \tau$	$c_H, c_ au$	-	c_H, c_τ, c_6, c_W
$h o \gamma \gamma$	C_{γ} Loop + $1/\Lambda^2$ s	uppressed wrt SM	$c_H, c_b, c_t, c_\tau, c_W$
$h \to WW$	c_H , c_{HW} , c_W	-	$c_H, c_W, c_b, c_t, c_\tau, c_6$
$gg \to hh$	c_g	c_t,c_b	c_t,c_b,c_H,c_6
$gg \to h$	c_g	c_t,c_b,c_H	$c_t,c_b,\!c_H$

Bold coefficients included in analysis

(via eHDECAY: Contino, Ghezzi, Grojean, Muhlleitner, Spira, 1403.3381)

Don't include suppressed (loop) operators in loop topologies



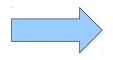
6 Parameters: $\{c_6, c_H, c_t, c_b = c_\tau, c_g, c_\gamma\}$ Unique accessibility in hh production!

HH in D=6 EFT

Reminder:

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \frac{c_H}{2\Lambda^2} (\partial^\mu |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \quad \text{Pure Higgs}$$
 Yukawa type
$$- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \mathrm{h.c.} \right)$$

$$+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G_{\mu\nu}^a G_a^{\mu\nu} + \frac{\alpha' \, c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu}$$



6 Parameters:
$$\{c_6, c_H, c_t, c_b = c_\tau, c_g, c_\gamma\}$$
Unique accessibility in hh production!

11 Florian Goertz HH in D=6 SM

Analysis

• Focus on $hh \to b \bar b \tau^+ \tau^-$ @LHC14

Dolan, Englert, Spannowsky, 1206.5001 Baglio, Diouadi, Grober, Muhlleitner, Quevillon; 1212.5581 Barr, Dolan, Englert, Spannowsky,, 1309.6318 Maierhoefer, Papaefstathiou, 1401.0007

• Main backgrounds: • $pp \rightarrow t\bar{t} \rightarrow b\bar{b}\tau^+\tau^- (+E_{\rm mis})$

Generated with aMC@NLO (+ HERWIG++)

• $pp \to ZZ \to bb\tau^+\tau^-$

Frixione et. al., 1010.0568 Frederix et. al., 1104.5613 Alwall et. al., 1405.0301

• $pp \to hZ \to b\bar{b}\tau^+\tau^-$

Analysis: $hh \rightarrow b\bar{b}\tau^+\tau^-$

• Main backgrounds: •
$$pp \rightarrow t\bar{t} \rightarrow b\bar{b}\tau^+\tau^- (+E_{\rm mis})$$

Generated with aMC@NLO (+ HERWIG++)

• $pp \to ZZ \to b\bar{b}\tau^+\tau^-$

Frixione et. al., 1010.0568 Frederix et. al., 1104.5613 Alwall et. al., 1405.0301

• $pp \to hZ \to b\bar{b}\tau^+\tau^-$

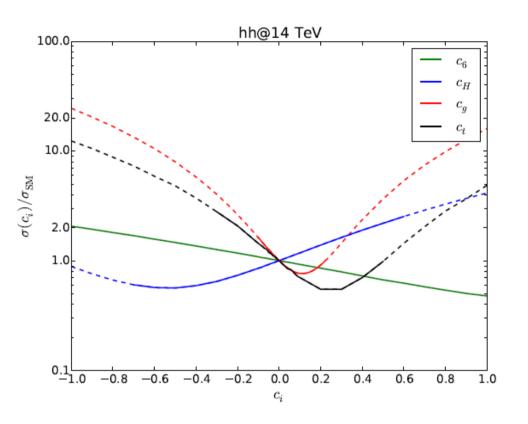
Cuts:

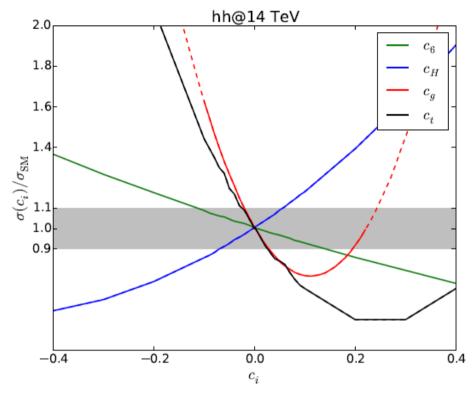
- Two τ -tagged jets with $p_{\perp} > 20 \, \text{GeV}$
- one fat jet with R = 1.4 (CA), two hardest sub-jets b-tagged ($|\eta| < 2.5$) Butterworth, Davison, Rubin, Salam, 0802.2470
- $m_{\tau^+\tau^-}, m_{\text{fat}} \in [m_h 25 \,\text{GeV}, m_h + 25 \,\text{GeV}]$
- $p_{\perp}^{\text{fat}}, p_{\perp}^{\tau\tau} > 100 \text{ GeV}, \ \Delta R(h, h) > 2.8, p_{\perp}^{hh} < 80 \text{ GeV}$

b,τ–tagging efficiencies: 70 %

see: Dolan, Englert, Spannowsky, 1206.5001; Maierhoefer, Papaefstathiou, 1401.0007

gg → hh Cross Section in EFT





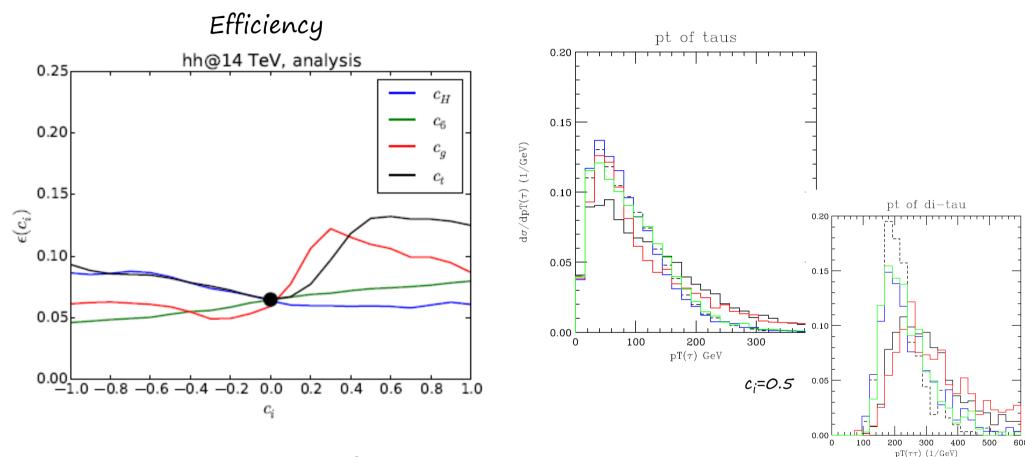
MSTW2008nlo_nf4 PDF

- Effect of varying individual Wilson coefficients
- Dashed: parameter-range excluded from current h data at the LHC

→ used HiggsBounds, HiggsSignals on cross sections calculated via eHDECAY

Bechtle et.al., 1311.0055, 1305.1933

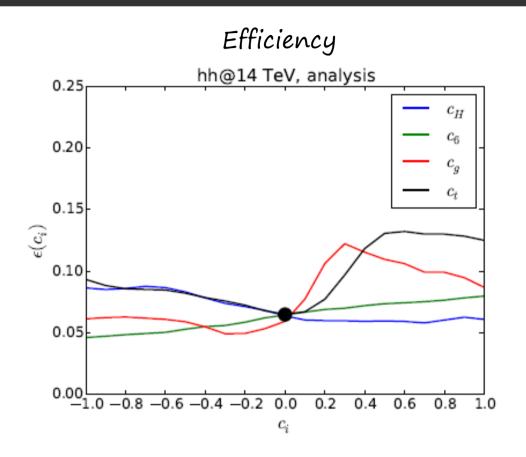
gg → hh after cuts

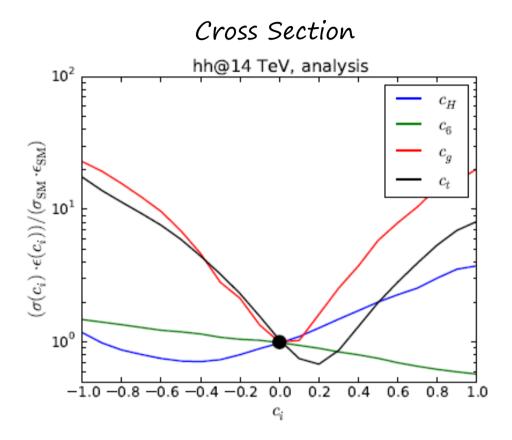


MC generator important for analysis

ightarrow describe distributions, which determine efficiencies $\epsilon(c_i)$

gg → hh after cuts





MC generator important for analysis

ightarrow describe distributions, which determine efficiencies $\epsilon(c_i)$

Full Analysis

- Start with model where only $c_6
 eq 0$ (unconstrained from single h)
 - \downarrow Vary only λ as done in previous studies (\rightarrow BRs unchanged)
 - $S(c_6)$ signal + B background events @ given L_{int}
 - $N(c_6) = S(c_6) + B$, $\delta N^2 = \delta S^2 + \delta B^2 + S^2 f_{\text{th}}^2$

$$\delta N^2 = N + S^2 f_{
m th}^2$$
 $30\% \sim 10\% \, (\text{scale}) + 10\% \, (\text{pdf} + \alpha_{
m s}) + 10\% \, (\text{m}_{
m t})$

Full Analysis

• Start with model where only $c_6
eq 0$ (unconstrained from single h)

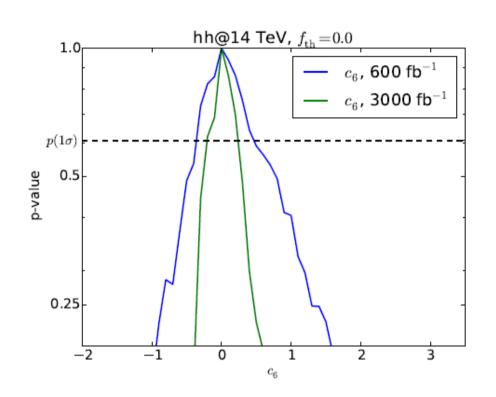
 \downarrow Vary only λ as done in previous studies (\rightarrow BRs unchanged)

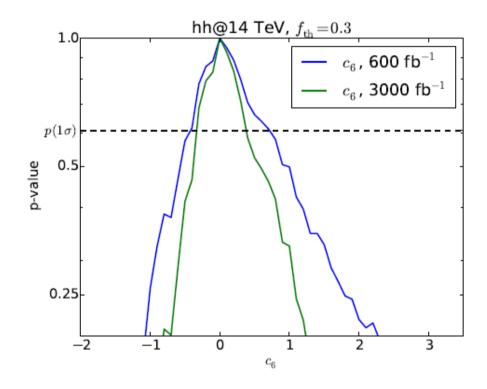
$$\delta N^2 = N + S^2 f_{\rm th}^2$$

• Expected constraint on c_6 , assuming the SM to be true (c_6 =0):

Compute how many standard deviations $\delta N(c_6)$ away a given $N(c_6)$, as predicted from theory, is from $N(c_6 = 0)$.

Full Analysis





$$c_6^{1\sigma}(600 \text{ fb}^{-1}) \in (-0.4, 0.5), \ c_6^{1\sigma}(3000 \text{ fb}^{-1}) \in (-0.3, 0.3), \ f_{\text{th}} = 0$$

 $c_6^{1\sigma}(600 \text{ fb}^{-1}) \in (-0.5, 0.8), \ c_6^{1\sigma}(3000 \text{ fb}^{-1}) \in (-0.4, 0.4), \ f_{\text{th}} = 0.3$

 $(c_6>0)-$ region more challenging as cross section reduced ightarrow larger uncertainty

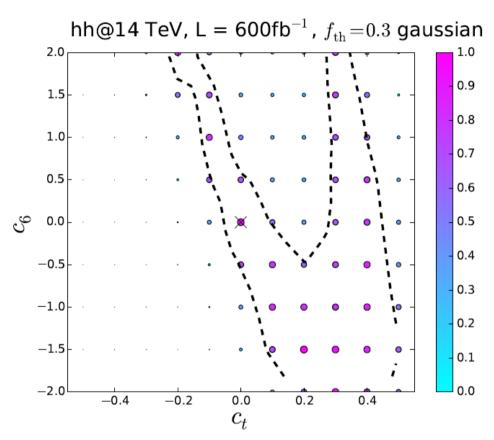
HH in D=6 SM Florian Goertz 19

Full D=6 Theory

- Again assume SM (c_i =0) and calculate distance of predicted $N(c_6,..,c_b)$ from $N(c_6=0,..,c_b=0)$ in units of $\delta N(c_6,..,c_b)$
- Show results in 2D grids (c_6, c_i) , $i=H,g,\gamma,t,b$
- Marginalize over other directions with a Gaussian weight, given by projected errors on the coefficients from single h measurements ($\sim 10\%$ @ (600-3000) fb⁻¹)
 - \implies in the future use real constraints (like p-values from HiggsBounds/Signals)
- Draw iso-contours corresponding to probability-drop of 1σ

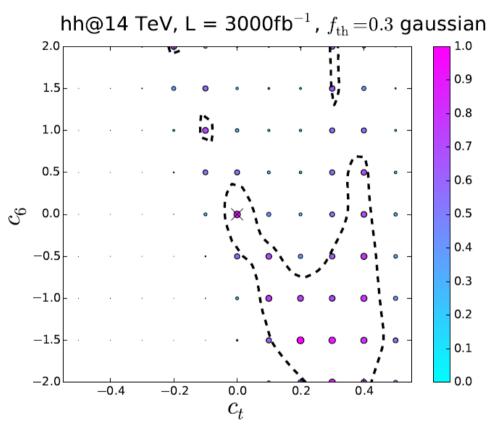
HH in D=6 SM Florian Goertz 20

Results: ct-c6

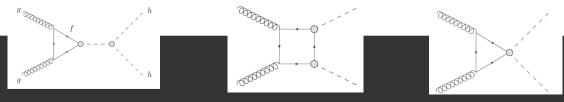


• Clear correlation visible: Enhanced hh cross section due to negative c_t can be compensated by reduction due to positive c_6

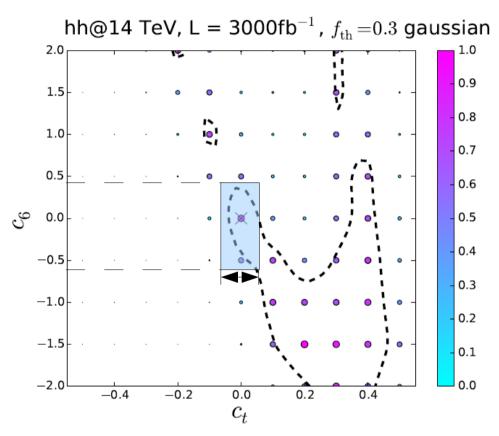
c_t - c_6



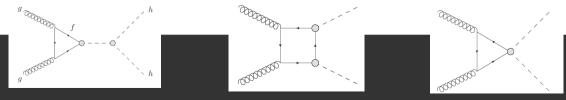
- Precise knowledge on 'top Yukawa' c_t helpful to improve the range for c_6
- \bullet On the other hand, could also obtain meaningful information on c_t in hh

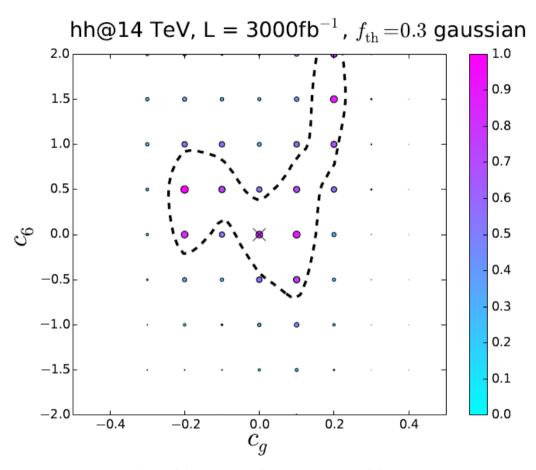


c_t - c_6

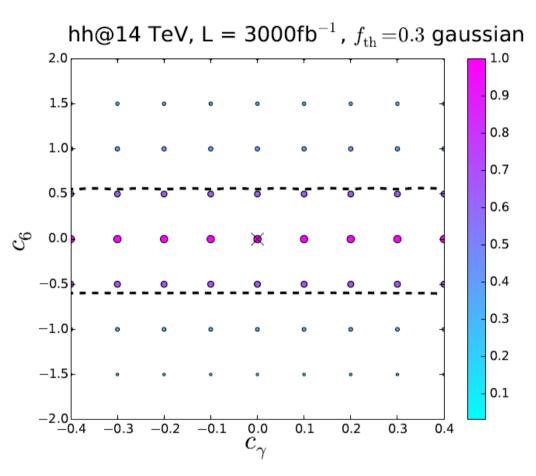


- Precise knowledge on 'top Yukawa' c_t helpful to improve the range for c_6
- \bullet On the other hand, could also obtain meaningful information on c_t in hh



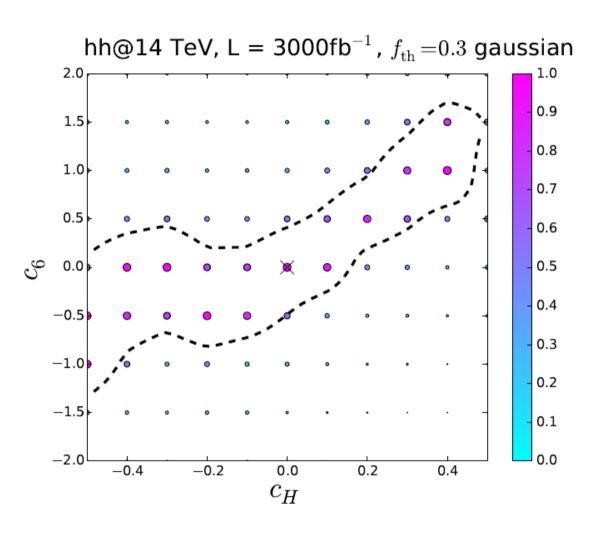


- Again compensation of effects from different operators possible
 - \rightarrow range for c_6 depends significantly on other coefficients

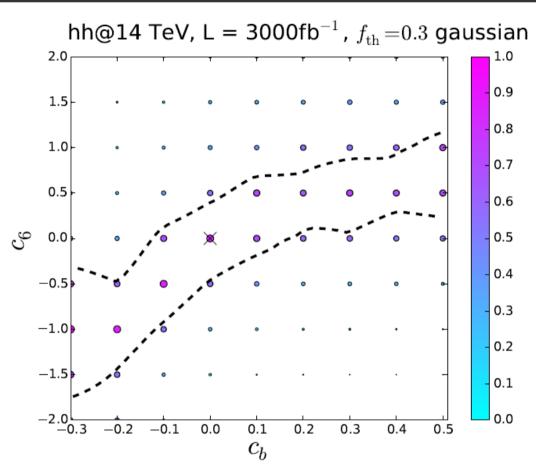


• As expected: negligible dependence on c_{γ}

CH-C6

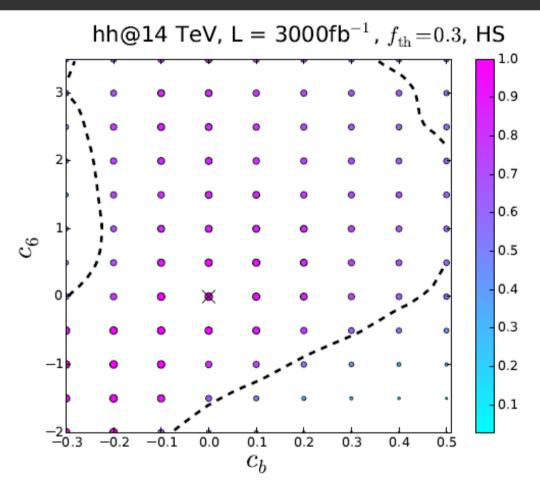


$(c_b = c_\tau) - c_6$



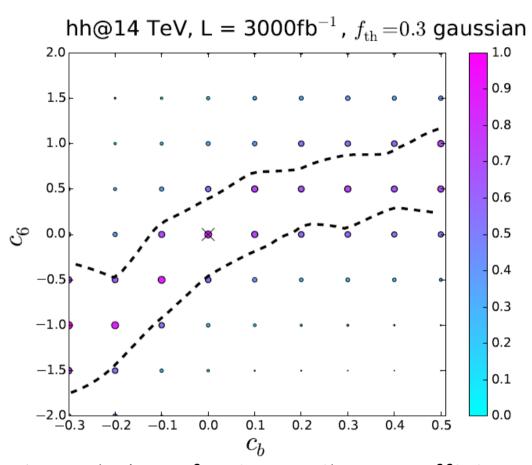
• Reduced BR due $(c_b=c_\tau)<0$ to can be compensated by enhanced production cross section due to negative c_6 and vice versa

$(c_b = c_\tau) - c_6$



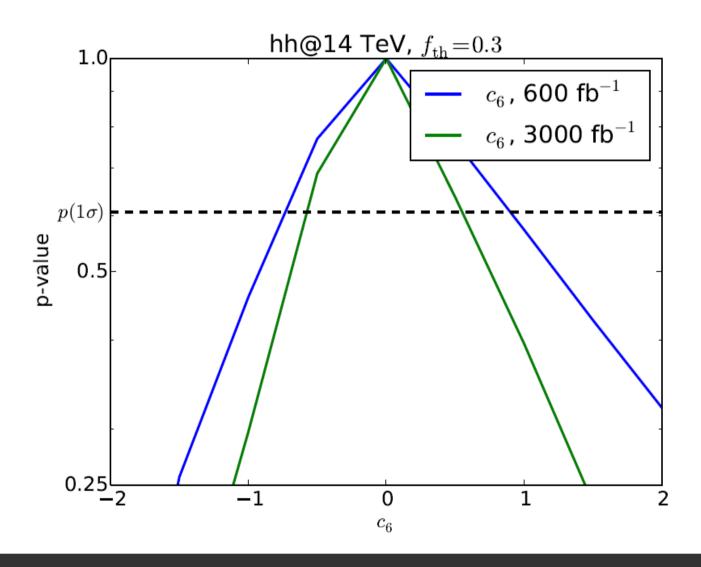
 Marginalize over other directions with current p-values for coefficients from single-h measurements (using HiggsBounds/Signals)

$(c_b = c_\tau) - c_6$



• Precise knowledge of other Wilson coefficients necessary for reasonable bounds on c_6

Full Marginalization - C6



Final Results

Expected 1σ constraints at the 14 TeV LHC, assuming $f_{th} = 30\%$

model	$L = 600 \; {\rm fb^{-1}}$	$L = 3000 \; {\rm fb^{-1}}$
c_6 -only	$c_6 \in (-0.5, 0.8)$	$c_6 \in (-0.4, 0.4)$
full (future)	$c_6 \in (-0.8, 0.9)$	$c_6 \in (-0.6, 0.6)$
$c_6 - c_t - c_\tau - c_b$ (future)	$c_6 \in (-0.8, 0.8)$	$c_6 \in (-0.6, 0.5)$

Final Results

Expected 1σ constraints at the 14 TeV LHC, assuming $f_{th} = 30\%$

model	$L = 600 \; {\rm fb^{-1}}$	$L = 3000 \; {\rm fb^{-1}}$
c_6 -only	$c_6 \in (-0.5, 0.8)$	$c_6 \in (-0.4, 0.4)$
full (future)	$c_6 \in (-0.8, 0.9)$	$c_6 \in (-0.6, 0.6)$
$c_6 - c_t - c_\tau - c_b$ (future)	$c_6 \in (-0.8, 0.8)$	$c_6 \in (-0.6, 0.5)$

• Use real p-values from *current* single Higgs measurements in marginalization:

full	$c_6 \gtrsim -1.3$	$c_6 \gtrsim -1.2$
$c_6 - c_t - c_\tau - c_b$	$c_6 \gtrsim -2.0$	$c_6 \in (-1.8, 2.3)$

Conclusions and Outlook

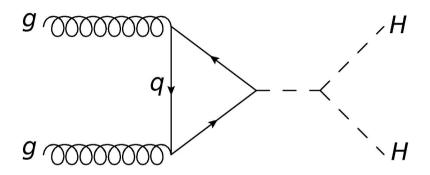
Analysis of hh productions can offer viable additional information on the D=6 extension of the SM

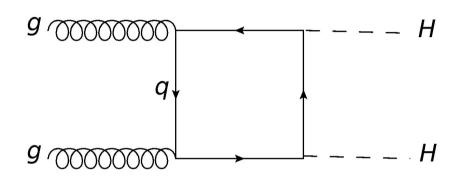
Some Current/Future Directions:

- Break degeneracy $c_b = c_\tau + \text{consider different projections}$
- Optimize analysis for different regions of parameter space
- Include other decay channels
- Consider distributions to improve bounds

Backup: HH @ LHC

• Most important mechanism: $gg \to hh$





Eboli, Marques, Novaes, Natale, PLB 197(1987)269 Glover, van der Bij, NPB 309(1988)282 Dawson, Dittmaier, Spira, PRD 58(1998)115012 Grigo, Hoff, Melnikov, Steinhauser, 1305.7340 de Florian, Mazzitelli, 1305.5206, 1309.6594 see also Maltoni, Vryonidou, Zaro, 1408.6542

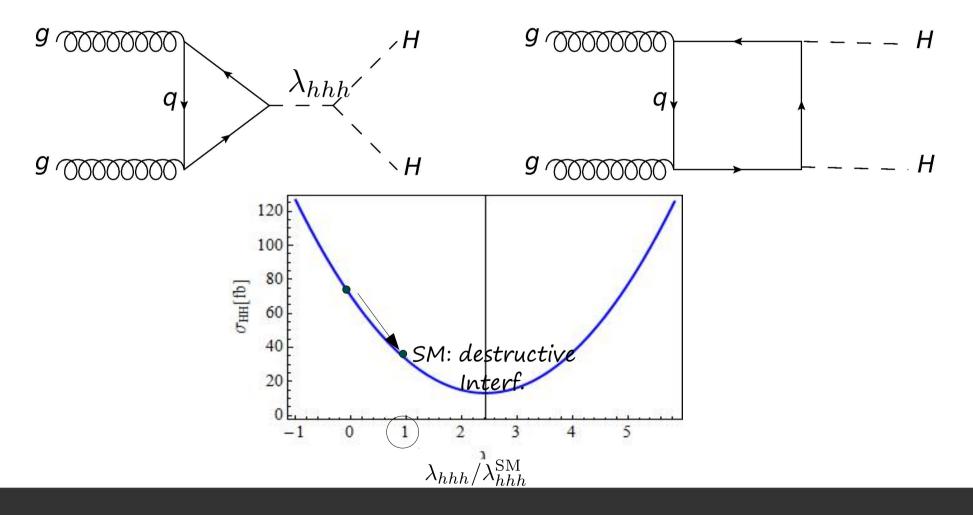
$$\sigma(gg \to hh)_{\rm LO} \sim 17 \, {\rm fb}$$
 $\sigma(gg \to hh)_{\rm NLO} \sim 33 \, {\rm fb}$
 $\sigma(gg \to hh)_{\rm NNLO} \sim 40 \, {\rm fb}$

Theoretical error (NNLO): $f_{th} \sim 10\%$ (scale) + 10% (pdf+ α_s) + 10% (m_t^{-1})

LHC@14TeV m_h ~125 GeV

Backup: HH @ LHC

• Most important mechanism: $gg \to hh$



Backup: Decay Channels

 $hh \to b\bar{b}\gamma\gamma$

Baur, Plehn, Rainwater, hep-ph/0310056

Significance @ 600 fb-1

$$\lesssim 2\sigma$$

$$(S/B=6/12)$$

 $hh \to b\bar{b}\tau^+\tau^-$

Dolan, Englert, Spannowsky, 1206.5001

$$\sim 4.5\sigma$$

$$(S/B=57/119)$$

$$hh \to b\bar{b}W^+W^-$$

Papaefstathiou, Yang, Zurita, 1209.1489

$$\sim 3\sigma$$

$$(S/B=12/8)$$

Theorists' analyses!

Backup: Hbounds/Signals Ranges

coefficient	μ_f	σ_f
c_H	-0.035	0.225
c_t	-0.04	0.17
c_b	0.0	0.18
c_g	-0.01	0.06
c_{γ}	-0.25	0.62

assuming gaussian distributions

Backup: Parameter-Space Scan

- Show results in 2D grids (c_6, c_i) , $i=H,g,\gamma,t,b$
- Marginalize over other directions, varying the coefficients in the 95% CL allowed regions, obtained from HiggsBounds/Signals (with a Gaussian weight)

$$p(c_i, c_6) = \frac{\bar{p}(c_i, c_6)}{\max(\bar{p}(c_i, c_6))}, \ \bar{p}(c_i, c_6) = \frac{\sum_{\{c_f\}} p(c_6, c_i, \{c_f\}) \times p_{\text{Gauss.}}(\{c_f\})}{\sum_{\{c_f\}} p_{\text{Gauss.}}(\{c_f\})}$$

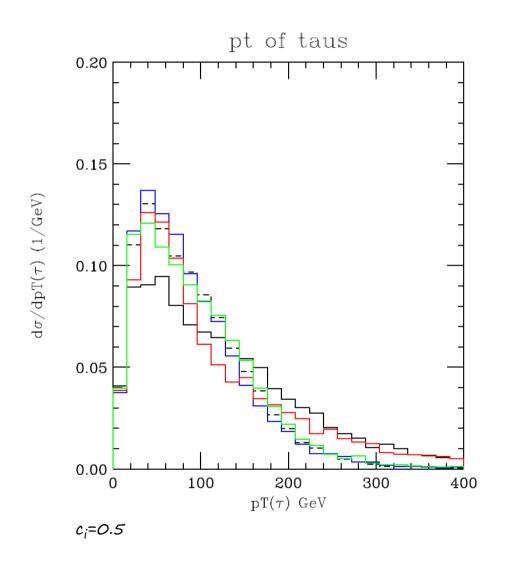
$$p_{\text{Gauss.}}(\{c_f\}) = \prod_f \frac{1}{\sigma_f \sqrt{2\pi}} \exp\left\{-\frac{(c_f - \mu_f)^2}{2\sigma_f^2}\right\}$$

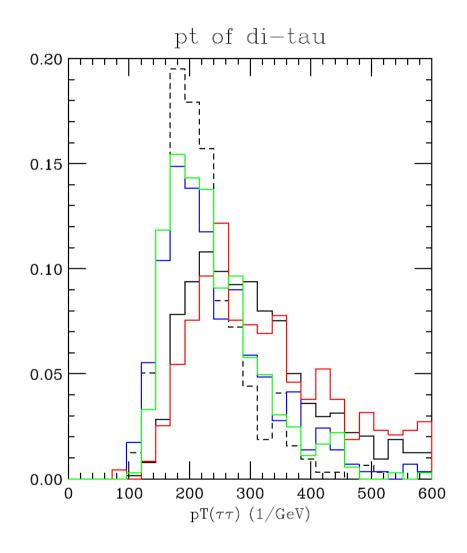
Projections: $\mu_f = 0, \ \sigma_H = 0.1, \sigma_{b,\tau,t} = 0.05, \sigma_g = 0.017, \sigma_{\gamma} = 0.13$ (~10% effects)

Draw iso-contours corresponding to probability-drop of 10

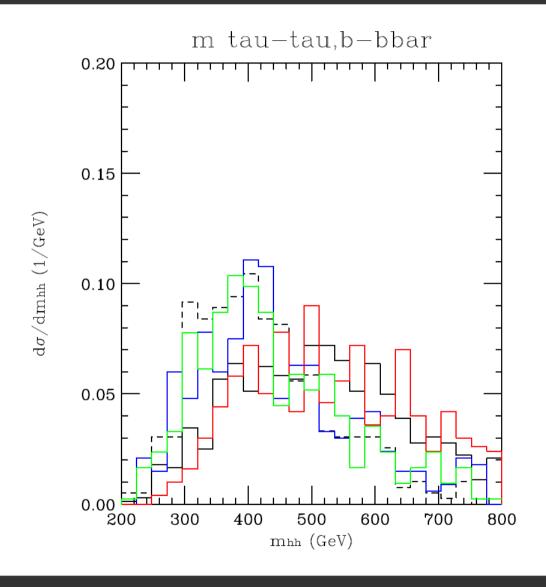
HH in D=6 SM Florian Goertz 38

Backup: Distributions





Backup: Distributions



 c_i =0.5