Search for di-Higgs resonances decaying to 4 b-jets in pp collisions at 8 TeV

HH(4b), Strategy I

A model independent search for a **narrow width** resonance $X \rightarrow HH(\rightarrow 4b)$

high b-tag efficiency

- trigger exploits CSV information
- CMVA tagger offline
 75% b-tag eff and 3.5% mis-tag

- Looking in the 270 GeV 1.1 TeV mass range
 - kinematic changes with m_X
 - 3 different mass ranges are analyzed separately

HH(4b), Strategy II

- A fit to a resonance and a smooth background
- Fully hadronic final state
- Multi-jet QCD is the main background
 - Data-driven modeling
 - The shape is inferred from various control regions
 - The normalization is adjusted in the final fit

17.93 fb⁻¹ (8 TeV)

HH(4b), Event Selections

- The trigger requires
 - 4 anti- k_T (0.5) central jets with $p_T > 30$ GeV
 - ▶ 2 with p_T > 80 GeV
 - 2 b-tag
- 4 central jets with p_T > 40 GeV and CMVA>0.71
- Two Higgs candidates
 - m(bb) ~ m_H ± 35 GeV
 - at least 2 jets with $p_T > 90$ GeV

 - $\Delta R(b\bar{b}) < 1.5$ and $p_T(b\bar{b}) > 300$ GeV
- $\sqrt{\Delta m_{H1}^2 + \Delta m_{H2}^2} < 17.5 \text{ GeV}$ Signal Region

 $\Delta m_{H_{1,2}} = m_{H_{1,2}} - 125 \text{ GeV}$

Signal resolution, Kinematic Fit

- each m(bb̄) is constrained to m_H within the resolution
 - m_H is well known

 $\left.\begin{array}{c}m\left(b\bar{b}\right)_{1}\\m\left(b\bar{b}\right)_{2}\end{array}\right\}\sim125\,\text{GeV}$

- b-jets 3-momentum corrected through the kinematic fit technique
- inputs are: jet $\eta,\,\varphi$ and p_T and their related uncertainty
- the corrections mainly affect the jet- $\ensuremath{p_{\text{T}}}$

relative improvement larger for the lowest mass points

$$m_X \sim 2m_H + \Delta m_X(E_{H1}, \vec{p}_{H1}, E_{H2}, \vec{p}_{H2})$$

HH(4b), Backgrounds

Several processes can contribute to the signal signature non-resonant bbb QCD production is dominant

plus contribution from bbcc

thanks to b-tagging jjjj and bbjj are highly reduced

modeled in data

tī mainly from c mis-identified as b-jet (t→bcs)

- modeled in simulation
- same model as multi-jet

Z boson in association with b-jets, ZH and ZZ associated production

found to be negligible

Multi-jet, modeling

- The QCD multi-jet production appears as a smoothly falling spectrum above the kinematic turn-on driven by the trigger selection.
- A kinematically close phase space (SideBand) is used to infer its functional form
 - not signal enriched
- A Gauss-Exp function is found to fit well the SB and various other validation regions
 - we assume this shape for the signal region [assign some systematics to assumption]

Multi-jet, modeling

- The QCD multi-jet production appears as a smoothly falling spectrum above the kinematic turn-on driven by the trigger selection.
- A kinematically close phase space (SideBand) is used to infer its functional form
 - not signal enriched
- A Gauss-Exp function is found to fit well the SB and various other validation regions
 - we assume this shape for the signal region [assign some systematics to assumption]

(a) LMR

(b) MMR

(c) HMR

- The validity of the Gauss-Exp to model QCD shapes is tested in several control regions.
 - VR/VB, close to the signal region
 - not signal enriched

- The validity of the Gauss-Exp to model QCD shapes is tested in several control regions.
 - VR/VB, close to the signal region
 - not signal enriched

- The validity of the Gauss-Exp to model QCD shapes is tested in several control regions.
 - VR/VB, close to the signal region
 - not signal enriched

The goodness of fit in the inner region is in agreement with the external sideband result The ratio shows the goodness of the spectrum compatibility hypothesis

- The validity of the Gauss-Exp to model QCD shapes is tested in several control regions.
 - SR/SB by reversing one b-tag requirement
 - similar kinematic

Good compatibility of the spectra in the signal-like with the sideband-like regions Great flexibility of the chosen fit function in adapting to the different m_X spectra

How a signal would look like

The signal is expected as a **peak** in the m_X distribution on top of **smooth background**

A fit to the m_X distribution in data events is performed in each phase space LMR, MMR and HMR.

The different components in the final fit are:

- signal
 - modeled with a Gaussian + exp/Gaussian for the tails
 - using spin-0 RS1 as benchmark
- multi-jet
- ∘ tīt

-shape from SB -rate from SR - $\sigma_{inj} = 1$ pb at 350 GeV

Systematic Uncertainties

- The multi-jet Gauss-Exp functional shape has been shown
 - to fit well different mass spectra
 - expected to fit well the signal region
 - **NOTE** we checked many shapes, this was the best.
- To assess a systematic uncertainty on this choice we compare with an alternative polynomial functions.
- The derived **uncertainty** degrades the upper limit by 2-30% depending on m_X
- Other systematic uncertainties mostly originate from the limited accuracy of the simulation
 - both the expected acceptance and the shape of the m_X in simulated events
 - their impact on the expected limits is 2% at most

Source of	Impact in LMR (%)		Impact in MMR (%)		Impact in HMR (%)	
systematic uncertainty	Signal	tī	Signal	tī	Signal	tī
Jet energy scale	0.1 - 1.4	0.02	0.0 - 0.2	0.1	0.1 - 0.3	3.2
Jet energy resolution	0.8 - 2.7	0.8	5.5 - 7	2.1	5.0 - 6.6	7.5
b-tagging scale factor	12.7	12.7	12.7	12.7	12.7	12.7
Trigger b-tag SF	2.8 - 4.1	2.7	2.7 - 3	2.0	2.6 - 2.7	2.5
Trigger p_{T} SF	5.7-18.3	9.1	5.4 - 7.4	6.7	6.0 - 8.0	6.9
Normalization	_	15%	_	15%	_	15%

Fit to m_X in the SR

A fit to m_X is performed in each phase space

signal extraction performed only in a restricted range of the full spectrum In the three m_x spectra no visible excess due to the presence of a signal is clearly visible

Observed Limits, Spin-0/2

- Sensitivity to WED predictions in the intermediate/high mass region
- The low mass region sensitivity not enough to probe (N)MSSM predictions

Observed Limits, Comparison

No significant deviation from expectation h(γγ)h(bb̄) h(bb̄)h(bb̄) complementary hh(bb̄bb̄) results are sensitive to spin hypothesis best channel for m_X > 400 GeV Constraints on WED (Radion and Graviton), 2HDM Overall hh is competitive with VV searches to test WED

This result extends in the bbbb final state the search for m_X < 500 GeV the best limits on the cross section X→HH in the mass range from 380 to 600 GeV (921 - 93 fb) from 700 to 970 GeV (136 - 23 fb)

Conclusions & Outlook for Run II

- No statistically significant signal excess is observed.
- Upper limits at 95% CL_S on the production cross section times BR in HH
 - best sensitive channel (result) in the medium mass scenario
 - Signal efficiency is derived using specific narrow resonance models
 - for spin-dependency we provide two sets of results for both the spin-0 and spin-2 hypotheses
 - (apart from this **how model independent are these limits?**)
- At 13 TeV an unexplored phase space for New Physics searches
 - Enhanced sensitivity to resonant double Higgs production
 - Biggest challenge is to maintain high trigger efficiency keeping the rate within the budget
 - similar trigger strategy : multi-jet +b-tag trigger
 - Investigate a bit more the narrow width approximation and provide an interpretation of results for different width hypotheses

Additional Material

HH(4b), Backgrounds

Several processes can contribute to the signal signature

multi-jet production $\sigma(jjjj) : \sigma(b\bar{b}jj) : \sigma(b\bar{b}b\bar{b}) = 6500:200:1$

top-pairs, dibosons production

Z boson in association with b-jets

process	$\sigma_{ m theo.}$		$\sigma \times \text{BR}(4b)_{\text{eff}}$				
	[pb]	$\epsilon_{ m sel}^{4j}$	$\epsilon_{ m tag}^{4b}$	$\epsilon_{ m sel}^{4b}$	[pb]	[pb]	
bbbb	~ 30	1	$(0.75)^4$	~0.3	9		
bbcc	~ 60	1	$(0.75)^2 \cdot (0.23)^2$	~0.03	1.8		
bbjj	$\sim 6 \cdot 10^3$	1	$(0.75)^2 \cdot (0.03)^2$	$\sim\!5\cdot\!10^{-4}$	3		
jjjj	$2 \cdot 10^{5}$	1	$(0.03)^4$	$\sim 8 \cdot 10^{-7}$	0.16		
tt	252.8	$(0.67)^2$	$(0.75)^2 \cdot (0.23)^2$	0.01	2.5		
Z+jj	$3.5 \cdot 10^{3}$	(0.04)	$(0.75)^2 \cdot (0.03)^2$	$\sim 2 \cdot 10^{-5}$	0.07		
ZH	0.4	$(0.15) \cdot (0.57)$	$(0.75)^4$	~0.02	0.008		
ZZ	8.3	$(0.15)^2$	$(0.75)^4$	~ 0.007	0.05		

non-resonant bbbb QCD production is dominant thanks to b-tagging jjjj and bbjj are highly reduced

tt, modeling

Evaluated in the SR from simulated events.

tt modeled in simulation Same function used for the multi-jet background.

tt, Template

The impact of the $t\bar{t}$ contribution to the shape of the m_x distribution is studied in the SB Subtracting the $t\bar{t}$ contribution does not affect the multi-jet shape

the peaks of the two components have slightly different mean values and widths.

The $t\bar{t}$ contribution is treated as a separate component

modeled in simulation by means of the same function used for the multi-jet background.

X-hh, Results

No significant deviation from expectation
h(γγ)h(bb) h(bb)h(bb) complementary
hh(4b) results are sensitive to spin hypothesis
best channel for m_X > 400 GeV
Constraints on WED (Radion and Graviton), 2HDM

Overall hh is competitive with VV searches to test WED

Spin-O, m vs excluded Λ

Figure 8.12: The observed and expected lower limit of Λ_R at 95% CL_S as function of m_X , assuming kL=35, no radion-Higgs mixing and BR(X \rightarrow HH) equal to 0.25.