

Two (related) analyses from ATLAS

- Non-resonant analysis:
 - Require two b-tagged jets with mass loosely consistent with Higgs mass
 - Then require two high-p_T photons, and do bump-hunting in Higgs mass window
 - Continuum shape from < 2 tag events, normalization from sideband
 - Single Higgs background from simulation
 - Use unbinned likelihood fit
- Resonant analysis (focus on < 450 GeV, where 4b dominates)
 - Build off of resonant result, but instead of unbinned S+B fit, perform counting experiment
 - Continuum estimate starts number of events in diphoton mass window (from sideband fit). The efficiency for these events to pass an additional $m_{\gamma\gamma}$ bb mass cut comes again from events with < 2 tags

Non-resonant result

- Set 95% CL upper limit on non-resonant production of 2.2 pb (expected limit 1.0 pb)
- p-value for consistency with background-only hypothesis: 2.4σ
- 5 events observed, 1.3 from continuum, 0.2 from single higgs processes

Process	Fraction of total
ggH	11%
qqH	2%
WH	1%
ZH	17%
$t\bar{t}H$	69%
Total	0.17 ± 0.04 Events

Improving the 4-object mass

- Tagged jets are nominal ATLAS anti-k_T R=0.4 jets with muon 4-vectors added to jet
 - This does not account for spectral effects, nor escaping neutrinos
- Apply simple scaling of bb 4-vector by 125 GeV/m_{bb} before adding to the diphoton 4-vector to form m_{yybb}
 - Gains quite a bit in resolution without significantly sculpting the background
- Considered using instead mass difference between bb and
 - diphoton systems, but less intuitive, and does not perform as well
- Investigating kinematic fits for Run 2
 - Not clear that it gains much

- Run 1: Madgraph5 + Pythia8, two types
 - Non-resonant production (SM LO)
 - Resonant production (gg-initiated Madgraph)
 spin-0 resonance with ~zero width
 - Given the expected SM signal (0.04 events), are we sensitive to uncertainties on SM hh process?
 - ggF/VBF + heavy flavor uncertainties, too?

Signal simulation Run 2

- Run 2: Should we consider moving to NLO versions?
 - Non-resonant production with aMC@NLO (not just gg fusion)? k-factors are flat. How necessary are there?
 - Kinematics change quite a bit if Higgs self-coupling varies. Any specific range of interest?
 - Looking also at composite Higgs (similar kinematics to SM?)
 - Other non-resonant benchmarks?
 - Focus on specific production mechanics (long-term)?
- Resonant production
 - 2HDM benchmark was adequate, but try a more exhaustive scan in 2HDM space
 - Focus on lower masses
 - What widths should we consider? Any specific production mechanics?
 - Beyond 2HDM and gravitons, other benchmark models?

Background simulation Run 1

- Sideband-driven for main backgrounds
- Still useful to understand composition of background. Studies show it's dominated by $\gamma\gamma$ ii, γ iii
 - Tight generator cuts on jets and dijet masses close our selection
 - Separate samples with j==b, find that light j, b and c all contribute
 - EW processes tiny, 10% from the that (electrons faking) photons)
 - 100% uncertainties on SM gg and VBF fusion with heavy flavor (similar to ttH diphoton analyses)

Background simulation Run 2

- Similar approach to Run 1 with larger-size photon+jet samples
 - Necessary for better optimization of analysis (ideally never use sidebands due to statistical fluctuations)
- Work towards NLO diphoton+(di)jet samples with heavy flavor (aMC@NLO_MG5?)
 - · What do k-factors look like? How do they change across those samples? How do they vary with kinematics? Would be very useful to have this information

- Non-resonant signal xsec goes up with factor of 3.4x, so with 6 fb⁻¹ we expect same signal yields as 8 TeV data set
- Background will go up too, but we should also optimize cuts a bit better, so expect to have competitive limits with Run 1

25 GeV

Separate 1tag and ≥2tag

regions for signal

85-155 GeV

Kinematic fit

Sideband fit

No

CMS ~50% larger in 2-tag channel

CMS ~400% larger in 2-tag channel

CMS ~50% better (expected)

Comparing ATLAS and CMS

Tag requirement

m_{ii} range

m_{jj} method

Resonance limit method

Non-resonance limit

Signal at 300 GeV

Background at 300 GeV

Comparing A	nd CMS

Comparing ATLAS and CMS			
	ATI A C		

Northern Illinois University

AILAS

CMS (CMS-PAS-HIG-13-032)

Jet p_T

55/35 GeV

≥ 2tag

95-135 GeV

4-vector scaling

Counting experiment

Yes

LHCXSWG

Limit at 300 GeV

Jahred Adelman

Systematic uncertainties for hh→bbyy

All small compared to statistical uncertainties

Systematic uncertainty		Non-Resonance Analysis		
		Single h Bkgd	hh Signal	Continuum
Trigger	[%]	0.5		_
Luminosity [%]		2.8		_
Photon	Identification [%]	2.4		_
1 1101011	Isolation [%]	2		_
Mass	Resolution [%]	Resolution: 13		_
	Position	Value: $+0.5/-0.6 \text{ GeV}$		_
Shape	$m_{\gamma\gamma}$ Continuum Shape [%]	_		11
	$m_{\gamma\gamma b\overline{b}}$: Statistical [%]	_		_
•	$m_{\gamma\gamma b\overline{b}}$: jj vs bb [%]	_		_
	$m_{\gamma\gamma b\overline{b}}$: Fit Model [%]	_		_
	b-Tagging [%]	3.3	1.8	_
Jets	Energy Scale [%]	6.5	1.4	_
	b-jet Energy Scale [%]	2.6	0.3	_
	Energy Resolution [%]	4.8	6.3	_
Theory	PDF+Scale [%]	8.4	_	_
	Single $h+HF$ [%]	14		_

Fit sidebands to 0-tag data, 1-tag, data with non-isolated photons, and using flat function (largest=11%)

100% uncertainty on gg and VBF due to HF content

Systematic uncertainties in resonance search

All very small compared to statistical uncertainties

		1		
Systematic uncertainty		Resonance Analysis		
		$SM h + hh Bkgd H \rightarrow hh Signal$		Continuum
Trigger	[%]	0.5		_
Luminosity [%]		2.8		_
Photon	Identification [%]	2.4		_
Photon	Isolation [%]	2		_
Mass	Resolution [%]	Migration: 1.6		_
	Position	Migration: 1.7%		_
Shape	$m_{\gamma\gamma}$ Continuum Shape [%]	_		11
	$m_{\gamma\gamma b\overline{b}}$: Statistical [%]	_		3-18
	$m_{\gamma\gamma b\overline{b}}$: jj vs bb [%]	_		0-30
	$m_{\gamma\gamma b\overline{b}}$: Fit Model [%]	_		16-30
Jets	b-Tagging [%]	3.4	2.4	- 1
	Energy Scale [%]	19	3.8	_
	b-jet Energy Scale [%]	6.5	2.2	
	Energy Resolution [%]	15	9.3	_
Theory	PDF+Scale [%]	+18/-15	_	_
	Single $h+HF$ [%]	14	_	_
		•		

Use simulation to evaluate differences in shape between yybb and yyji masses

Use alternate fit functions to Landau distribution

Resonance analysis

p-values in resonance search

Resonant analysis in a picture

