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Two (related) analyses from ATLAS

e Non-resonant analysis:
e Require two b-tagged jets with mass loosely consistent with
Higgs mass
e [hen require two high-prt photons, and do bump-hunting in
Higgs mass window
e Continuum shape from < 2 tag events, normalization from
sideband
e Single Higgs background from simulation
e Use unbinned likelihood fit
e Resonant analysis (focus on < 450 GeV, where 4b dominates)
e Build off of resonant result, but instead of unbinned S+B fit,
perform counting experiment
e (Continuum estimate starts number of events in diphoton
mass window (from sideband fit). The efficiency for these
events to pass an additional myybb Mass cut comes again
from events with < 2 tags

Jahred Adelman LHCXSWG




Non-resonant result 8 Northern minois
i
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Improving the 4-object mass [ o

e Tagged jets are nominal ATLAS anti-kt R=0.4 jets with muon 4-
vectors added to jet

e This does not account for spectral effects, nor escaping
neutrinos

e Apply simple scaling of bb 4-vector by 125 GeV/mpp before
adding to the diphoton 4-vector to form myybp

e (Gains quite a bit in resolution without significantly sculpting
the background

e Considered using instead mass dlfference betvveen bb anad

diphoton systems, but less N
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Resonant result
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Signal simulation in Run 1

e Run 1: Madgraphbd + Pythiag, two types

e Non-resonant production (SM LO)

e Resonant production (gg-initiated Madgraph)
spin-0 resonance with ~zero width

- Given the expected SM signal (0.04
events), are we sensitive to uncertainties
on SM hh process?
- ggF/VBF + heavy flavor uncertainties,

too?
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Signal simulation Run 2

e Run 2: Should we consider moving to NLO versions?
* Non-resonant production with aMC@NLO (not just gg
fusion)? k-factors are flat. How necessary are there?
- Kinematics change quite a bit if Higgs self-coupling
varies. Any specific range of interest?
e | ooking also at composite Higgs (similar kinematics to SM?)
- Other non-resonant benchmarks?
e Focus on specific production mechanics (long-term)?
e Resonant production
e ?HDM benchmark was adequate, but try a more exhaustive
scan in 2HDM space
e [ocus on lower masses
- What widths should we consider? Any specific
production mechanics?
- Beyond 2HDM and gravitons, other benchmark models?
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Background simulation Run 1

e Sideband-driven for main backgrounds
e Still useful to understand composition of background.
Studies show it's dominated by yyij, 7iii

e [ight generator cuts on jets and dijet masses close
our selection

e Separate samples with j==Db, find that light j, b and ¢
all contribute

e E\W processes tiny, 10% from ttbar (electrons faking
photons)

e 100% uncertainties on SM gg and VBF fusion with
heavy flavor (similar to ttH diphoton analyses)
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Background simulation Run 2

e Similar approach to Run 1 with larger-size
photon+jet samples

e Necessary for better optimization of analysis
(ideally never use sidebands due to statistical
fluctuations)

e \Work towards NLO diphoton+(di)jet samples
with heavy flavor (aMC@NLO_MG5?)

- What do k-factors look like? How do they
change across those samples? How do
they vary with kinematics? Would be very
useful to have this information
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Expected results with 5 fb1 @ 13 TeV

e Non-resonant signal xsec goes up with factor of
3.4x, so with 6 fb-1 we expect same signal
vields as 8 TeV data set

e Background will go up too, but we should also
optimize cuts a bit better, so expect to have
competitive limits with Run 1
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Comparing ATLAS and CMS Bl yorerpineis

_ ATLAS CMS (CMS-PAS-HIG-13-032)

Jet pr 55/35 GeV 25 GeV
Tag requirement > 2tag Separa.te g ahd =2Eg
regions for signal
mj range 95-135 GeV 85-155 GeV
mjj method 4-vector scaling Kinematic fit
Resonance limit method Counting experiment Sideband fit
Non-resonance limit Yes No
Signal at 300 GeV CMS ~50% larger in 2-tag channel
Background at 300 GeV CMS ~400% larger in 2-tag channel
Limit at 300 GeV CMS ~50% better (expected)
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Systematic uncertainties for hh—bbyy [ oo

All small compared to statistical uncertainties

Non-Resonance Analysis

Systematic uncertainty
Single h Bkgd |hh Signal|Continuum

L o : Fit sidebands
Photn | pon (1] i ] to O-tag data,
Mass - emenon Valne a08r06Gev | - 1-tag, data with
hae s Statoicnl U] . ) U non-isolated

. . - .
Mept 7 VS bb 7] - - \phOtOﬂS, aﬂd
m. 5 Fit Model [%] - -

b-Tagging (%) 3.3 18 N usin g flat
Jets Energy Scale [%)] 6.5 1.4 — i
b-jet Energy Scale [%)] 2.6 0.3 — fu N Ctlon
Energy Resolution [%] 4.8 6.3 —
PDF+Seale [%) s - - (largest=11%)
eory
Single h+HF [%)] 14 - —

A

100% uncertainty on gg and VBF due to HF content
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Norlhern Illmon%

Systematic uncertainties in resonance search 2 Dhiversty

All very small compared to statistical uncertainties

Resonance Analysis U S e

Systematic uncertainty - -
SM h + hh Bkgd|H — hh Signal|Continuum . .
Trigger [ f simulation to
Luminosity [%] 2.8 -
»ntification [%] _
Photon Identification [%)] 2.4 eval u ate
Isolation [%] 2 -
Resolution [%)] Migration: 1.6 — d " ff "
Mass
Position Migration: 1.7% - | e re n C e S | n
m.~~ Continuum Shape [%)] - 11 h
Shape M5 Statistical [%] - 3-18 S a p e
M. 5 37 vs bb 7] - 0-30
m,.,z: Fit Model [%] - 16-30 b etween
b-Tagging %] 3.4 2.4 -
Jets  Energy Scale [%] 19 3.8 - W 0 b an d
b-jet Energy Scale [%] 6.5 2.2 -
Energy Resolution [%)] 15 9.3 -
Theory PDE+Scale [% +18/-15 - - W J Masses
Single h+HF [%] 14 - -

Use alternate fit functions to Landau distribution
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Resonance analysis [ oo
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p-values in resonance search B Yoy
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Global p-value = 2.10
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Resonant analysis in a picture Iﬂ Deeeghyiets
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