HH prospect studies for CMS for the HL-LHC **HH Subgroup Meeting** Aram Apyan December 8, 2014 ## **Di-Higgs Production** - One of the exciting prospects of HL-LHC - Cross section at √s=14 TeV is 40.2 fb [NNLO] - Challenging measurement - Nominal performance for Phase II detector scenario and 3000fb⁻¹ - Final states shown at ECFA - bbγγ [320 expected events at HL-LHC, 3000fb⁻¹] - But relatively clean signature - bbWW [31000 expected events at HL-LHC, 3000fb⁻¹] - But large backgrounds - bbbb and bbττ final states under consideration ## HH->bbγγ analysis description - Event selection - 2 photons: $p_T>40GeV$ and $p_T>20GeV$, $|\eta|<2.5$ - 2 b-tagged jets, CSV medium WP, $p_T > 30$ GeV, $|\eta| < 2.4$ - Kinematic selection - Additional lepton veto - Less than 4 jets with $|\eta| < 2.4$ and $p_{\tau} > 30$ GeV - ΔR_{bb} and ΔR_{vv} less than 2.0, min of $\Delta R_{vb} > 1.5$ - Two categories considered - 1. Both photons in barrel - 2. At least one photon in endcap - Likelihood fit signal extraction - 2D fit of M_{bb} and M_{yy} - Mass fit window of 100GeV<M $_{\gamma\gamma}$ <150GeV and 70GeV<M $_{bb}$ <200GeV is used ## Phase II detector performance - Parameterized object performance - Tuned to CMS Phase II detector at <PU>=140 - b-tagging performance - 75% b-tagging efficiency - 20% charm jet efficiency - 1% light jet efficiency - 81% photon efficiency (barrel) - 1% electron->photon fake rate - (0.1-0.5)% jet->photon fake rate 12/8/14 ### CMS results | Process / Selection Stage | HH | ZH | t₹H | bb̄H | $\gamma\gamma$ +jets | γ+jets | jets | tŧ | |---------------------------------------|------|------|-----|------|----------------------|--------|------|-----| | Object Selection &
Fit Mass Window | 22.8 | 29.6 | 178 | 6.3 | 2891 | 1616 | 292 | 113 | | Kinematic Selection | 14.6 | 14.6 | 3.3 | 2.0 | 128 | 96.9 | 20 | 20 | | Mass Windows | 9.9 | 3.3 | 1.5 | 0.8 | 8.5 | 6.3 | 1.1 | 1.1 | Table 3: The expected event yields of the signal and background processes for 3000 fb⁻¹ of integrated luminosity are shown at various stages of the cut-based selection for the both photons in the barrel region. Mass window cuts are 120 GeV to 130 GeV for $M_{\gamma\gamma}$ and 105 GeV to 145 GeV for M_{bb} . A large fit mass window, 100 GeV to 150 GeV for $M_{\gamma\gamma}$ and 70 GeV to 200 GeV for M_{bb} , is used for the likelihood fit analysis. The statistical uncertainties on the yields are of the order of percent or smaller. ## Upgrade effects The average expected relative uncertainty on the di-Higgs cross section measurement is shown as a function of the b-tagging efficiency (left) and the photon efficiency (right). # HH->bbWW analysis description Search for HH \rightarrow bbWW \rightarrow bblvlv #### Event pre-selection: - 2 b-jets Medium WP, p_T > 30 GeV 2 leptons, muons: p_T > 20 GeV, electrons: p_T > 25 GeV - MET >20GeV Clean up cuts $(m_{jj}$, m_{ll} , ΔR_{jj} , ΔR_{ll} , $\Delta \varphi_{jj}$, || #### **Analysis Optimization:** - Neural network discriminant from kinematic variables - Variables: M_{II} , M_{jj} , ΔR_{II} , ΔR_{jj} , ΔR_{jl} , MET, $\Delta \varphi_{II}$, p_{jj} , and M_T # HH->bbWW analysis - Based on Delphes fast simulation tuned to CMS Phase II detector - Considering only the main tt background - The rest of the SM processes are negligible - Neural Network discriminant to suppress tt - Signal region: Neural Network output > 0.97 ### HH->bbWW results - Results are quoted as a function of the background systematic uncertainty - Data driven techniques will likely constraint the uncertainties to the percent level ### Summary - Preliminary Higgs pair-production studies - Expected uncertainty of 60% on cross section for bbγγ at 3000fb⁻¹ - Evaluating impact of end-cap calorimeters - Results for bbWW final state - Result quoted as a function of the background uncertainty - Studies in other channels ongoing - bbbb and bbττ final states ### **BACKUP** # Input variables to Neural Network - (Left) p_{jj} distribution comparing the HH and tt shape differences. Variable used as input for the Neural Network discriminator. - (Right) min(ΔR_{jl}) distribution comparing the HH and tt shape differences. Variable used as input for the Neural Network discriminator.