Higgs Pair Production at HL-LHC.

Prospects for Higgs pair production in the channel HH $\rightarrow bb\gamma\gamma$

N. Styles, presenting work from the ATLAS Higgs Prospects group HH Subgroup Meeting 08/12/14

Introduction

- Self coupling is a fundamental property of the SM Higgs field
 - To understand if observed Higgs boson is really SM, must measure this coupling as well as its coupling to other particles
- Self-coupling strength can be determined by measuring Higgs pair production cross-section
 - Destructive interference between diagrams with and without self-interaction
- ightharpoonup NB Analysis is not currently optimised specifically for sensitivity to $\lambda_{_{HHH}}$

Self Coupling at HL-LHC

Decay Channel	Branching Ratio	Total Yield (3000 fb ⁻¹)
$b\overline{b} + b\overline{b}$	33%	40,000
$b\overline{b} + W^+W^-$	25%	31,000
$b\overline{b} + \tau^+ \tau^-$	7.3%	8,900
$ZZ + b\overline{b}$	3.1%	3,800
$W^+W^- + au^+ au^-$	2.7%	3,300
$ZZ + W^+W^-$	1.1%	1,300
$\gamma \gamma + b\overline{b}$	0.26%	320
$\gamma\gamma + \gamma\gamma$	0.0010%	1.2

- Total (SM) NNLO cross-section 40.8 fb⁻¹
 - Need large HL-LHC data sample to have a good chance of measuring this process
- > A wide variety of final states available
 - High branching fraction modes are largely swamped by backgrounds
 - bbγγ chosen as promising mode for study due to clean γγ signature
- > Final measurement will use combination of final states
 - bbττ, WWττ and others are also under study

HL-LHC performance & object definitions

- Full simulation not available for signal plus all backgrounds under HL-LHC conditions
 - Performance parameterisations extracted from benchmark samples, and applied to generator-level particle 4-vectors
 - ATL-PHYS-PUB-2013-009, ATL-PHYS-PUB-2013-004
 - Momentum smearings, efficiency functions, fake rates, etc...
- > Probabilities for e→γ fakes not described in notes
 - After discussion, took assumption that performance will be ~similar to today
 - Apply 2/5 % for barrel/endcap

Monte Carlo Samples

Samples	Generated/	$\sigma \cdot BR$	Order	Generated	Equivalent
	Showered With	(fb)	pQCD	Events	Lum. (fb ⁻¹)
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=1)$	MadGraph5/Pythia8	0.11	NNLO	3×10^{5}	2.8×10^{6}
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=0)$	MadGraph5/Pythia8	0.23	NNLO	3×10^{5}	1.3×10^6
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=2)$	MadGraph5/Pythia8	0.05	NNLO	3×10^{5}	6.1×10^6
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=10)$	MadGraph5/Pythia8	1.81	NNLO	3×10^{5}	0.2×10^6
$b\bar{b}\gamma\gamma$	MadGraph5/Pythia8	338	LO	4.0×10^{6}	1.2×10^4
$c\bar{c}\gamma\gamma$	MadGraph5/Pythia8	1.6×10^{3}	LO	1.8×10^{7}	1.2×10^4
$b\bar{b}\gamma j$	MadGraph5/Pythia8	2.6×10^{5}	LO	1.9×10^{7}	72
$b\bar{b}jj$	MadGraph5/Pythia8	9.4×10^{7}	LO	4.9×10^{5}	5.2×10^3
$jj\gamma\gamma$	MadGraph5/Pythia8	2.2×10^4	LO	4.6×10^{7}	2×10^3
$t\bar{t} (\geq 1 \text{ lepton})$	MC@NLO/Herwig	5.3×10^5	NNLO	1.5×10^{7}	280
$t\bar{t}\gamma$	MadGraph5/Pythia8	3.3×10^{3}	LO	6.2×10^6	1.9×10^{3}
$t\bar{t}H(\gamma\gamma)$	POWHEG/Pythia8	1.39	NLO	1.2×10^{5}	8.4×10^4
$Z(b\bar{b})H(\gamma\gamma)$	Pythia8	0.304	NLO	1.0×10^{6}	3.3×10^6
$b\bar{b}H(\gamma\gamma)$	MadGraph5/Pythia8	1.32	NLO	7.5×10^5	5.6×10^5

- > Signal under several self-coupling scenarios
 - Unless otherwise stated, talking about SM scenario
- > 4 main background categories
 - irreducible continuum, reducible continuum, top, and single Higgs

Kinematics

Kinematics

bbγγ system

Selection Criteria

- > The following event selection was arrived at following an optimisation
 - Mostly optimised S/sqrt(B), but tried to avoid overly tight cuts on parameters where it could reduce sensitivity to self-coupling through restricting the phase space

Event Selection Criteria

 \geq 2 isolated photons, with p_T > 30 GeV, $|\eta| < 1.37$ or $1.52 < |\eta| < 2.37$

 \geq 2 jets identified as *b*-jets with leading/subleading p_T > 40/25 GeV, $|\eta|$ < 2.5

No isolated leptons with $p_T > 25$ GeV, $|\eta| < 2.5$

< 6 jets with $p_T > 25$ GeV, $|\eta| < 2.5$

$$0.4 < \Delta R^{bb} < 2.0, 0.4 < \Delta R^{\gamma\gamma} < 2.0, \Delta R^{\gamma b} > 0.4$$

$$100 < m_{b\bar{b}} < 150 \text{ GeV}, 123 < m_{\gamma\gamma} < 128 \text{ GeV}$$

$$p_T^{\gamma\gamma}, p_T^{b\bar{b}} > 110 \text{ GeV}$$

Results

Expected yields (3000 fb ⁻¹)	Total	Barrel	End-cap
Samples			_
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=1)$	8.4±0.1	6.7±0.1	1.8±0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=0)$	13.7±0.2	10.7±0.2	3.1 ± 0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=2)$	4.6±0.1	3.7±0.1	0.9 ± 0.1
$H(b\bar{b})H(\gamma\gamma)(\lambda/\lambda_{SM}=10)$	36.2±0.8	27.9±0.7	8.2 ± 0.4
$bar{b}\gamma\gamma$	9.7±1.5	5.2±1.1	4.5±1.0
$c\bar{c}\gamma\gamma$	7.0±1.2	4.1±0.9	2.9 ± 0.8
$b\bar{b}\gamma j$	8.4±0.4	4.3±0.2	4.1±0.2
$bar{b}jj$	1.3±0.2	0.9±0.1	0.4 ± 0.1
jjγγ	7.4±1.8	5.2±1.5	2.2 ± 1.0
$t\bar{t} (\geq 1 \text{ lepton})$	0.2±0.1	0.1±0.1	0.1 ± 0.1
$t\bar{t}\gamma$	3.2±2.2	1.6±1.6	1.6±1.6
$t\bar{t}H(\gamma\gamma)$	6.1±0.5	4.9±0.4	1.2±0.2
$Z(b\bar{b})H(\gamma\gamma)$	2.7±0.1	1.9±0.1	0.8 ± 0.1
$b\bar{b}H(\gamma\gamma)$	1.2±0.1	1.0±0.1	0.3 ± 0.1
Total Background	47.1±3.5	29.1±2.7	18.0±2.3
$S/\sqrt{B}(\lambda/\lambda_{SM}=1)$	1.2	1.2	0.4

- > Split events into barrel/endcap categories
 - If one photon has 1.37<|eta|<2.37, endcap</p>
- > Overall significance 1.3 σ
 - ('total' column means 'only one category')

N. Styles | Higgs XSsec

Limit Setting

Based on these results, we should be able to exclude values of the self-coupling strength larger than 8.7xSM, and smaller than -1.3xSM

Summary

- Projected signal significance ~1.3 σ in this channel, for 3000 fb⁻¹ of 14 TeV p-p data
 - Significantly more realistic analysis than was previously available
 - Not very inspiring on its own, but can form a component of a measurement that uses multiple channels (perhaps combining results across ATLAS and CMS)
 - Work is ongoing on these other channels
- > Number of places where we can improve matters
 - Different b-tagging working points (including specialization for c-jet rejection)
 - Look at Multi-Variate Analysis techniques; very preliminary look suggests ~30% improvement
- Full documentation was recently approved as a PUB note for ECFA workshop
 - ATL-PHYS-PUB-2014-019

