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) Classicalization and the black Hole N-portrait

[G. Dvali, C. Gomez, .....]

Einstein gravity possesses many interesting features:

* Geometry
* Black Holes
* Relation to Yang-Mills

But there are still many unsolved problems:
Quantization &

* Perturbative renormalizibility

* Non-perturbative properties, space-time
transitions, emergence of space & time, ..

3
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In particular two questions and puzzles:

* What is the quantum nature of Black Holes -
microscopic understanding of black hole entropy?

Two (interconnected ?) claims:

Solve these problems (partially) within Einstein gravity!

= Classicalization & the black hole N-portrait.

* What is the high energy behavior of graviton
scattering amplitudes !

Unitarity at tree level ?
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Classicalization & the black hole N-portrait:
* Are described by IR physics,

. where there is no need to modify gravity in the IR

However there remain still some UV problems:

* Precise coefficient coefficient in black hole entropy:

1 A
i 12

* Renormalization, UV finiteness of loop amplitudes

S —

New UV degrees of freedom ©  String theory !

5
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Unitarity and classicalization:

It is known that tree level graviton scattering
amplitudes grow like S (center of mass energy).

= Violation of unitarity at s = M5

One possible solution: Wilsonian approach:

Amplitude is unitarized by integrating in new weakly
coupled degrees of freedom of shorter and shorter
wave lengths (at higher and higher energies).

6
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But: Gravity has smallest length scale: L p
Beyond this length the Wilsonian approach breaks down:

It is expected that black holes will be produced in
particle scattering processes with /s = < R, = /sL%

['t Hooft (1987); Antoniadis, Arakani-Hamed,Dimopoulos, Dvali (1998); Banks, Fischler (1999);
Dimopoulos, Landsberg (2001);Yoshino, Nambu (2002); Giddings, Thomas (2002);
Eardley, Giddings (2002); Giddings, Rychkov (2004); Rychkov (2004); ...]

Classicalization: Amplitudes get unitarized by classical
black hole formation.

[G. Dvali, C. Gomez (2010); G. Dvali, G. Giudice, C. Gomez, A. Kehagias (2010)]

(Gravity protects itself at high energies by black hole
formation.)
UV physics & IR physics
So we need a better understanding of how black holes
are formed in graviton scattering amplitudes.

7
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Black hole corpuscular N-portrait:

Quantum black hole = Bound state of N gravitons

(Bose-Einstein condensate)

[G. Dvali, C. Gomez (2011 - 2014); G. Dvali, C. Gomez, D.L. (2012)]

Relevant properties (for us):
* N is large and the gravitons are soft.
* Interaction strength among individual gravitons is small:

L? :
a=— << 1 (R .. graviton wave length)

* Collective ('t Hooft like) coupling: A\ = o /N

* Black holes are formed at the quantum critical point:

A =1 (R=+VNLp)

[G. Dvali, C. Gomez, arXiv:1207.4059;
8 Flassig, Pritzel, Wintergerst, arXiv:1212.3344]
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Black hole bound state (at A = 1):
* Massandsize: Mz =+VNMp, Rpyg=VNLp
* Exponential degeneracy, entropy: S ~ NV

 Semiclassical behavior: N — o

positive
Bogoliubov
frequencies,
system of N free
gravitons : Ofmp

weakly coupled graviton
Bose-Einstein condensate

Can we reconcile this picture in graviton scattering
processes (expressed in terms of N and \ )?
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Interrelation between classicalization and b. h. N-portrait:

2 —— N graviton amplitude with high center of mass s:

N —o00, s—00(s>>Mp) with )\:M;;;N#O

Results of the paper:

* Concrete technical computations of graviton scattering
amplitudes in FT and ST in this kinematical regime -
here only main results.

* Dependence on lambda shows interesting
behavior that supports (at least in self-consistent
way) the classicalization and black hole picture.

* Some interesting transition from FT with
black holes to string theory with Regge modes.

10
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II) Large N graviton scattering amplitudes at
high energies in FT and ST

k2

(i) Field theory

Mo n_2(N, s;5) :

1
#constraints = §(N — D)(N—-D —1)
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High energy regime: Eikonal Regge limit

Eikonal limit: two momenta are singled out
Regge limit: high center of mass energy

S? Z?je{]‘?N}?
—es, ic{l,N}, j¢{l,N},
6287 Z7J¢{17N}7

¢

sij = (ki + k;)?

s — 00, e — 0
o ! s
S 4
}2
> 3
1 A } } 2
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We want to have soft gravitons in the final state.

/3

Classicalization limit: Pin ™~ \ﬁ and Pout ™~ N — 9

S i,jE{l,N},
52]:(k1+kj)2N<_Ni27 26{17N}7]¢{17N}7

\ﬁa Za]¢{17N}
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To compute the graviton scattering amplitudes we use
on-shell methods and KLT techniques.  ixawai LewelienTye (1986)

N-point gravity tree level scattering via KLT:

My = (-")NQ Y An(Lo(2,...,N —2),N —1,N)

2
J,WES(N_g)
S(2,....N—2),0(2,....,N —2)]n_1An(1, N = 1,0(2,...,N — 2), N)

[Bern,Dixon, Perelstein, Rozowsky (1998); .... Bjerrum-Bohr, Damgaard, Sondergaard,Vanhove (2010)]

e S|...,...] is called momentum kernel, S ~ 85_3
e An(...) color ordered MHV Yang-Mills amplitude:
(i j)*

At i, i, NT) =

(12)(23)...(N—1N)(N 1)
SPinor he|icity brackets: <@]> — 4 /’573]’ ’6i¢ij [Park, Taylor (1986)]

14
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* Yang-Mills amplitude scales like:

f(¢) (N —2)"

 Momentum kernel scales like:

o ((Nim?)m

* Thus gravity amplitude scales via KLT like:
My ~rN"2C(N)s x (N —2)?

with C(N) double sum over phase factors.

AN:S 2

It fixes the combinatorics of the amplitude.
We computed it using QFT methods and
scattering equations in string theory:

C(N) = (N —1)!

I5
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To obtain the physical probability, i.e. the S-matrix element,

we have to consider
N—1

[T doi 1My ?6*(Peotar)
1=2

1
(N —2)!

d|(2S|N —2)|° =

Full cross section by integrating over momenta and

. . el S
summing over helicities: ( Pin ~ VS , Pout ~ N\CZ )

Physical 2 — N — 2 scattering probability in
classicalization regime:

L23s\ " AN\
[(2|S|N — 2)|* = (Ni;) N! = (N) N! ~ e VAN

Collective coupling A\ = aN = S/MI%N

16
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(i) Closed string theory

High energy behavior of open/closed string amplitudes

shows exponential fall off due to Regge modes.
[Veneziano (1968); Amati, Ciafaloni,Veneziano (1987); Gross, Mende (1987), Gross, Manes (1989]

Example: 4-point graviton amplitude
D~ )T (-2 )0~ % )

t
L(Ss)D(F T

My~ K

)
oo K2 A4 X AT/ —exp{% sln|s| + tln |t| +u1n|u|)}

Square of
YM-amplitude

Momentum String

kernel form factor

(Note: this was basically the state of the art before our paper.)

17
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Generalization to arbitrary N: (StiebergerTaylor (2013.2014)]
* KLT and Laplace saddle point methods.
Recent work on scattering equations. [Cachazo.HYuan (2013)]

— This fixes the combinatorics of string amplitude
in the high energy limit o' — oo .

My = (=) 72 N2 AL Sy sv(A)

A is an (N —3)! -dim. vector of independent
open string amplitudes:

Av(1,7m(2,...,N=2),N=1LN)=g{}7 >  Fuy Ayn(o), 7€ Sn_s
cESN_3

So is the momentum kernel:

, . }(N —3)! x (N — 3)! matrices
I is the string form factor:

sv: single valued map [Stieberger (2014)]

18
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High energy limit:
L? L?
T 1% L%

Eikonal limit & Classicalization regime:

s>>LP, gs

MN — /ﬁJN_2 ‘AYM(L“-?N)F fN

String form factor, comprises all stringy physics

/

S12 S Q
12 23) exp{E( S19 In S12 + S93 In S23 + SonN In S2N )}

Fy ~ (4ma)N73(

SoN

) exp{;( rynz; +yilny, + 2zlnz )},
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Two different energy regimes:

/3

(2) N < M, : ,infrared, field theory regime

Field and ST theory amplitudes agree.

This was already conjectured for the MHYV case up to 5 points by [Cheung, O Connell,Wecht (2010)]

Fy=1 = My=My"
NE

(12) N > M, : ,ultraviolet®, string theory regime

My ~ /{N—Z O/N—3 s 6—0‘7/(N—3) sln(a’s)

Amplitude gets tamed by string states (Regge modes).

20
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lll) Interpretation of high energy behavior in
the light of the N-portrait

What makes us believe that our results support the
idea of classicalization and black hole formation?

(i) Field theory
Perturbative amplitude:

(2IS|IN —2)]2 ~ e NANV . A=

S
M%N
Unitarity threshold: amplitude changes behavior at A = 1.

A < 1 weak coupling: unitary behavior.
A > 1 strong coupling: non-unitary behavior.

These regions precisely correspond to the 3 regimes
of the black hole N-portrait.

21

Montag, 19. Januar 15



For large s unitarization occurs if N increases appropriately:

02 N+1 <1
025N -
This bound implies that N = N_..;; = SL?;

This is the core of the idea of classicalization!

N should be larger than the corresponding entropy of a
black hole with mass equal to the center of mass energy.

Increase energy s

22
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Connection to non-perturbative black hole bound state:
The perturbative amplitude is suppressed by e V.
This is just the inverse of the degeneracy of states of a

black hole with entropy § ~ NV .

Therefore this suppression factor is compensated at the
critical point A = 1 by ¢’ from the degeneracy of
black hole states:

Apm ~ ) |@ISIN)[; N|BH); 15, ~ AVe ™™, x eV,

pert.
amplitude

projection on black

(This Was cros hole hound state

So, black hole is exactly dominating at A = 1.

23
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System of N
essentially free
gravitons

black h

- 7
~~

weakly coupled graviton
Bose-Einstein condensate

24
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(ii) String theory: there are additional regimes:

() §<MS: & \< Ng?

FT amplitude = ST amplitude, black hole dominance

NE

String states dominate.
black holes

weakly-coupled

gravitons excluded region

field theory : string theory

_/\ 1 N\
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black holes

field theory eﬁzlgi(iid string theory
- B s 1 0o fr M T T AL T T - _ ‘>
1 Ng? A
field theory string theory
Ng? 1 A

Consistency for all A
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What is happening at the point \ = Ng:f =17

Here the FT. amplitude agrees with the string
amplitude at the critical point A = 1.

This the point where the string effects match the
amplitude from the FT. black hole formation.

1
Js = —F= = ing - :
N String - black hole correspondence

black hole can be described by a state of strings.

[Horowitz, Polchinski (1996); Dvali, D.L. (2009); Dvali, Gomez (2010)]

Here the IR is meeting the UV.

27
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V) Some final remarks and observations

As we have seen, the gravity amplitudes can be
expressed as sums over Yang-Mills amplitudes.

But we never used the information about the
number of colors [V, .

* Relation between open and closed string coupling:

s = Gopen
* At point of string-bh correspondence: gs = 1/\/N
* Planar limit of gauge theory: ggpen = 1/N,
So naively we get: N = N°?

What is the interpretation of this relation?

28
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Summary:

* Exact computation of N-point gravity (string)
amplitudes in transplanckian energy region in closed form.

* We found evidence for classicalization and
black hole production (black hole N-portrait):

- dependence on N

- dependence on A

- dependence on entropy &

* We found an interesting transition between field
theory: string - black hole correspondence.

* The limit of large V. inYang-Mills apparently
corresponds to the limit of large number of
constituent gravitons in scattering process.

29
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Next steps:

[Stieberger (2013/14); Cachazo, He,Yuan (2014)]

* Mixed gauge boson (open)/gravity (closed) amplitudes:
Bh N-portrait with matter

[Dvali, Gomez, D.L. (2013)]

e Bh N-portrait beyond tree |eve| First steps in [Kuhnel, Sundborg (2014)]

Thank you very much!

30
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