XIIth Quark Confinement and the Hadron Spectrum

Contribution ID: 124

Type: not specified

Polyakov line actions from SU(3) lattice gauge theory with dynamical fermions via relative weights

Thursday, 1 September 2016 16:00 (30 minutes)

We extract an effective Polyakov line action from an underlying SU(3) lattice gauge theory with dynamical fermions via the relative weights method. The center-symmetry breaking terms in the effective theory are fit to a form suggested by the hopping-parameter expansion, and the effective action is solved at finite chemical potential by a mean field approach. We show results for a small sample of lattice couplings, lattice actions, and lattice extensions in the time direction. We find in some instances that the long-range couplings in the effective action are very important to the phase structure, and that these couplings are responsible for long-lived metastable states in the effective theory. Only one of these states corresponds to the underlying lattice gauge theory.

Summary

We extract an effective Polyakov line action from an underlying SU(3) lattice gauge theory with dynamical fermions via the relative weights method. The center-symmetry breaking terms in the effective theory are fit to a form suggested by the hopping-parameter expansion, and the effective action is solved at finite chemical potential by a mean field approach. We show results for a small sample of lattice couplings, lattice actions, and lattice extensions in the time direction. We find in some instances that the long-range couplings in the effective action are very important to the phase structure, and that these couplings are responsible for long-lived metastable states in the effective theory. Only one of these states corresponds to the underlying lattice gauge theory.

Primary author: Dr HÖLLWIESER, Roman (NMSU/VUT)
Co-author: Prof. GREENSITE, Jeff (SFSU)
Presenter: Dr HÖLLWIESER, Roman (NMSU/VUT)
Session Classification: Section A

Track Classification: Section A: Vacuum Structure and Confinement