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Active Pixel sensors? /

= “Classical” radiation-hard (passive) pixel sensors are
usually just n-in-n or n-in-p diodes read out by bump-
bonded ROCs/FEs

= rather expensive: special 4”/6” sensor processes on
high-resistive FZ substrates, bump-bonding, thinning,...

E T detector

= need to cover ~200 m2 of area for HL-LHC tracker F|
upgrades ; wa e
track

= Could also try this in standard CMOS

processes benefitting from 8” wafers and — -l it
large-volume production experience Il 5
= usually rather low-resistive substrates: 10-
20 Ohm*cm, rarely more HV deep N-well
= CMQOS process allows for “HV”, hence @ —— 14ym @ toov | |

breakdown voltage ~30-120V .

2 depletion zone ~10 pm: signal ~1-2ke -

= challenging for hybrid pixel readout
. The depleted high-voltage diode used as sensor (n-well in p-
e I eCt ronics substraFt)e diode§J 9 P

= disclaimer: “HV-CMOS” allows to switch
“nigh” voltages, we don't even use this

= But it's a CMOS process, therefore we can...

~1000e |
P-substrate Not depleted
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...Include active circuits: Active Pixel Sensors

* implementation of
= first amplifier stages

= additional cuircuits: discriminators, impedance converters, logic, ...

= careful: In its original form, no triple/quadruple wells are used - PMOS only
partially usable to avoid crosstalk

= deep sub-micron technology intrinsically rad-hard, but design needs
to be specific, too

_Pixel i i Pixel i+1
_NMOsS _PMOS
. 1 (o
P-Well

------------------------------------

P-substrate ; Not depleted

HV deep N-well

c

| S I B S S IR B S
n i 14 ym @ 100V

0] ‘~1ooo

X eDepleted

(AN O

g -------------------------------------------------------------- :16“0.6-6“-‘ -------------------------------------------------------------------------------
<

CMOS electronics placed inside the diode (inside the n-well)
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Why new sensors anyway”? HL-LHC and ATLAS

= Quick reminder: at LHC, the Higgs was found, but many processes require
huge amount of integrated luminosity — High-Luminosity LHC (HL-LHC)

= integrated luminosity: 300 fb" — 3000 fb
= What does this mean for the experiments?
= higher occupancy: ~25 events/BC — 140-200 events/BC
= more data rate = new readout electronics, rad-hard high-speed links
= more radiation damage:
= at 5 cm radius: ~2¢10'¢ N, cm2, ~1500 MRad

= at 25 cm radius: up to10%™ N, cm2, ~100 MRad, several m? of silicon

= strip region: many 10™ n,, cm, up to 60 MRad, up to ~200 m? of silicon

1 MeV neutron equivalent fluence [narticles / cm?]

115 pileup
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Who? “Original” ATLAS

Daniel Muenstermann

R-CMOQOS collaboration

V/

= University of Bonn = University of Goettingen
L. Gonella, T. Hemperek, F. M. George, J. GroBe-Knetter, A.
Hugging, H. Krlger, T. Quadt, J. Rieger, J. Weingarten
Obermann, N. Wermes = University of Glasgow

= LBNL R. Bates, A. Blue, C. Buttar, D.
M. Garcia-Sciveres Hynds

= CERN = University of Heidelberg
M. Backhaus, M. Capeans, S. C. Kreidl, |. Peric

Feigl, S. Fernandez Perez, M. = CPPM

Nessi, H. Pernegger, B. Ristic P. Breugnon, P. Pangaud, D.

= University of Geneva Fougeron, F. Bompard, J.C.
S. Gonzalez-Sevilla, D. Ferrere, Clemens, J. Liu, M. Barbero,
G. lacobucci, A. Miucci, D. A.Rozanov

Muenstermann, A. La Rosa

“Original” collaboration largely based on institutes with expertise in
pixel readout chips, recently also much interest from strip upgrade
community, see later slides...
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Bottom line:How to stay rad-hard, but get cheaper?

= Ways to reduce cost: use
" industrialised processes
= large wafer sizes
= cheap interconnection technologies

* |dea: explore industry standard CMOS processes as sensors
= commercially available by variety of foundries
= |arge volumes, more than one vendor possible
= but: application of drift field required for sufficient rad-hardness
=>» requires careful choice of process and design
= 8” to 12” wafers
= |ow cost per area for large volumes
= wafer thinning quite standard

= usually p-type Cz silicon
= thin active layer, helpful to disentangle tracks in boosted jets and at high eta
= requires low capacitance — small pixel
= Basic requirement: Deep n-well (— allows high(er) substrate bias)
= existing in many processes, e.g. even 65nm (!)
= usually deepest in HV-CMOS — highest possible bias
= also existing in specialised imaging processes = HR-CMOS

Active Pixel Senso
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R&D developments

Smart and simple R&D developments

pixels = .. /24 H18 and 65nm
H35 Technology %, (H35) technology

SDS (65nm)
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HVPixel1 (H35)
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process)

SDA with sparse readout
(“intelligent” CMOS pixels)
HV2/MuPixel chip

- baseline for p3e experiment at PSI
» see poster of D. Wiedner!

SDA with frame readout
(simple PMOS pixels)
HVM chip

SDA with capacitive readout
(“intelligent” pixels)
Capacitive coupled pixel
detectors
CCPD1 and CCPD2 detectors

— ATLAS and CLIC

Active Pixel Sensc
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The beginning: proof of concept prototypes
= Several early test-chips by lvan Peric (most in AMS 350 nm HV-CMOS

Binary information

e

Analog information

AL

RO chip |

Analog information

——
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Prototype summaries

aniel Muenstermann

First chip — CMOS pixels
Hit detection in pixels
Binary RO
Pixel size 55x55um
Noise: 60e
MIP seed pixel signal 1800 e
Time resolution 200ns

rame readout - monolithic

PML1 Chip
Pixel size 21x21pym
Frame mode readout

Bumpless hybrid detect

CCPD1 Chip
Bumpless hybrid detector
Based on capacitive chip to chip

signal transfer
Pixel size 78x60um
RO type: capacitive

4 PMOS pixel electronics
128 on chip ADCs
Noise: 90e

Noise: 80e Test-beam: MIP signal 2200e/1300e
MIP signal 1800e Efficiency > 85% (timing problem)
1 Spatial resolution 7um

Uniform detection
CCPD2 Chip

Edgeless CCPD
Pixel size 50x50pum

- .

Noise: 30-40e .
Time resolution 300ns - PM2 Chip
SNR 45-60 Noise: 21e (lab) - 44e (test beam)

S— = Irradiations of test pixels Test beam: Detection efficiency 98%
e et 60MRad - SNR 22 at 10C (CCPD1) Seed Pixel SNR ~ 27
(nottested yer) 10"n_Jem? - SNR 50 at 10C (ccpp2)  Cluster Signal/Seed Pixel Noise ~ 47
- Spatial resolution ~ 3.8 um

LVDS digital /Os.

B cBeB o8

Single ramp

| Analog pads
ADC 1T

o Bl e o8l

ww g

switched

i e
CAPPIX
Power and signal bumps

|. Peric

*If work, these features would allow to
operate the readout chip without any




UNIVERSITE DE GENEVE Daniel Muenstermann

From MAPS to active sensors

= Existing prototypes were not suitable for HL-LHC, mainly because
= readout too slow, no trigger handling/buffering
= time resolution not compatible with 40 MHz operation
= high-speed digital circuits might affect noise performance

= |dea: use HV-CMOS as active sensor in combination with a (possibly
modified) existing fast/”LHC” readout chip
= makes use of highly optimised readout circuits
= can be seen as first step towards a sensor being integrated into a 3D-
stacked readout chip (not only analogue circuits but also charge
collection)
= Basic building blocks: small pixels (low capacitance, low noise)
= can be connected in any conceivable way to optimise readout

8 granularity, e.g. .

ch = (larger) pixels - | | |

CLJ = strips

D >

X Pixels ROC
o <

o ,

= |

2 \
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AATLAS: AMS H18 HV-CMOS

[t il At L e E T L L L "

= Austria Micro Systems HV-CMOS process with 180 nm
feature size
= expected more radiation hardness wrt 350 nm
= less power consumption/faster amplifiers to satisfy LHC
timing requirements

= “HV2FEI4”-chip:
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= biasing of substrate to ~60-100V possible
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= substrate resistivity ~10 Ohm*cm — Ner > 10™/cm?
= radiation induced Ne# insignificant even for innermost layers

i
i
g
2
Al
]
8
gl
Bl
;
il
f;
?E
f
L
il g
%i

= depletion depth theoretically in the order of 10 um
— drift signal ~1 ke-

= readout via existing pixel chip (ATLAS FE-I4)

= preamplifier and discriminator in pixel cell at the expense of increased
crosstalk and noise

in principle also strip-like readout possible, position along virtual strip
encoded in pulse height (analogue sub-pixel encoding)

Active Pixel Sen
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Pixels: sizes and combinations

= Possible/sensible pixel sizes: 20x20 to at most 25x250 pm
= 50x250 pm (current ATLAS FE-I4 chip) too large

= combine several sensor “sub-pixels” to one ROC-pixel
= sub-Pixels encode their address/position into the signal as pulse-height-
information instead of signal proportional to collected charge

= routing on chip is well
possible, also non-neigh- | FEI4 Pixels
bour sub-pixels could
be combined and more
than one combination is /

possible
Signal transmitted capacitivel/ m
CCPD Pixels
Bias A -
/ e
4
=

Bias B
4 <

\d’ Bias C
1 <

Active Pixel Senso
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Pixels: bonding?

= Bump-bonding expensive and difficult for thin assemblies (bow)

= Alternatives: wafer-to-wafer bonding, gluing
= amplification possible, hence AC transmission not a problem at all

= variations in glue thickness can be handled by tuning procedures and
offline corrections if necessary  Pixel readout chip (FE-chip)

" Nno therma| bowing during Curing - r Pixel electronics based on CSA
= glue layer thicknesses <10 pm C::aucr;t'g‘ngce ﬁ Sump-bond pad
were achieved across 2x2cm = -
using low-viscosity epoxies P—— ’
Transmitting Summing line
- i L ; plate r 1T ‘|_|'
3 ﬁ )

20 ym

-

] 33x 125 um
j C& Pixel CMOS sensor b
~

Pl S S AN

e o p =T

T Soa ——

Active Pixel Sensors —
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V2FEl4: standalone characterisation

= |rradiations at CERN/PS, with reactor neutrons and with x-rays

= on special PCB allowing for remote operation, HV2FEI4 powered and read-
out during irradiation

un-irradiated device
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- Entries 33674
H Mean E154
1con H RS 4145
200 :
B0 [ Sr-90 spectrum
404 -—
fran i [
Y P I [ IR I | UM B R
K} FaEH LIEHI [=EHI fEH I ALEH i 1600 14con
His 1O LNsch 1ol ns)
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Entrie= 19603
S0t Mean TI5T
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200
oo
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[ H
=c0 [H Fe-55 spectrum
400
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P
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CCPD9 irradiated at 80 MRad
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Ml
RME
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clear decrease of the ToT amplitude

ToT two times smaller

Sr-90 spectrum

—=

300007
- lel5n /cm? n-irradiated g
200 sample; 60V bias, +5°C, &
- MPV at ~1200 e-
20000 7|
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: |.r
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P PR T BT ! |
000 e 2000 10000 1Z0O0

14ooo

Bulk and ionisation
damage: mix of
reduced signal and
lower amplification:
reduced to ~50%
after irrad

Only bulk damage:
Only loss of signal
due to diffusion
being eliminated:
reduced to ~70%
after irrad

AmpOut (mv)
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V2FEI4 irradiation: dose effects

= Radiation effects due to dose, could be reproduced by x-ray irradiation
= HV2FEI4v1: deliberately rad-soft/standard design to see how far it lasts
= HV2FEIl4v2: different rad-hard designs (guard rings, circular transistors, ...)

= Signal amplitude clearly much more stable

= jrradiated up to 862 Mrad (!), drop visible after ~500 MRad
= dose rate effect, annealing brings signal back to ~100%

= rad-hardness significantly improved, hadron irradiations to follow

Amplitude output signal ampli {(mV)

250

200

150

100

50

HV2FEI4v1

Amplitude [mV]

]

0 10 20 30 40

IhRes = 3 Dose (MRad)

HV2FEI4v1 irradiated with x-rays
Amplifier gain loss

50

50MRad

260 ]
240
220
200 -}
180
160
140
120
100
80 -}
60 -}
40
20}

]

10 days
annealing

<
nnealing steps:
h 70C

HV2FEI4v?2

Pixel1
Pixel2
Pixel3
Pixel4

862 Mrad

i I 2(I)0 I 4(I)0 I 6(I)O I 8(I)0 An neal i ng/
60 Dose [Mrad] .. .

. Optimisation

of settings

HV2FEI4v2 irradiated with x-rays
Amplifier gain loss
Rad hard pixels
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Active Pixel Sensc

at 100V of bias

V2FEI4 irradiation: fluence effects
= Numerically, depletion depth for 10 Ohm*cm substrate is about 10 pm

= Classically, this should yield less than 800 electrons of collected charge

" We observe ~1500-1900 e~ before irradiation — large diffusion component?

= Still ~1200 e~ after irradiation to 1e15 neg/cm2 using (slow) in-pixel

charge-sensitive amplifiers

= Diffusion should be ruled out at that fluence, other effects?

— Edge-TCT

= can distinguish (fast) drift from (slow) diffusion
= can measure charge collection zones

Variables
= Transients (Current vs. time)

= |ntegrals (Charge vs. position)

Credits: Results also obtained as
part of the RD50 collaboration

volt-BlineMean:time {z==4.96 && x==6.7}

n
o
X
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0002
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il I 1 ] e
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i ¥ L
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b | WP

" Diffusion
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— =58 slow coninbulion daminatad
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4\What is edge-TCT?

= TCT: Transient Current Technique, i.e. observe the time-resolved
charge collection generated by MIP, alpha or laser pulse

= usually lasers are used because of their constant charge deposition per
pulse = can average many samplings, get rid of noise

= can scan the sensor to study inter-pixel boundary efficiencies etc.
= short signals, so charge-sensitive preamps usually too slow, need fast
current-based amplifiers — external, discrete, specialised amps
= edge: shooting in through the side-wall of the sensor with a IR laser

= can study the charge collection at d}llf\ierent depths — depletion?

O BIAS-T
G. Kramberger et al.,IEEE Trans. Nucl. Sci. NS-57 (2010) 2294. % h 10kHz-2.5GHz
y V4| 1.5 GHz scope
e 7 n-— 1mplan:t !
. |

*1060 nm
+~100 ps pulse

+~200 Hz repetition ' beam w1dth

p — bulk FWHM~8 i

polished
edge

W
lens

system p- 1mplant
|||||||||||||||||l||||l|||||||||||||||||||||I|||||||||||||||l||||||||||||||||

G. Kramberger @ e e e A A A A A e e A A A A A A A A AR AR
J J__ Al back contact
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Samples

Measurements on AMS H18 HV2FEI4 v2 and v3

= v2: Only charge-sensitive preamplifier output accessible
= 33 x 125 pm pixel with full electronics
= very slow risetime compared to expected signal collection time
= difficult assessment of drift/diffusion contribution
= v3: one dedicated passive 100 x 100 pm diode accessible
= no neighbours, so beware of edge effects e

= also irradiated samples available,
for today: 1e15 neq/cm2

EEEEEEER
EEENEEEEEEEE |G SSEEEEEEEEEEEEEEEEE

Active Pixel Se
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Vmax [V]
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v2 results: CERN/UnIGe, LJubIJana

* Find full pixel length, extension of
charge collection zone up to almost Esw

80 um depth with significant
contributions to 20-30 um

Preamps generally too slow to
easily discriminate between drift
and diffusion

= Ljubljana analysis effort: risetime to
reach 50% of full charge

[~ V=0V, (x,y)=(-11.8250,-12.9000) mm
0.03—
- V= 2V, (x,y)=(-11.8250,-12.9000) mm
Ot S N V= 10 V, (x,y)=(-11.8250,-12.9000) mm
[ V=30V, (x,y)=(-11.8250,-12.9000) mm
0.025—
— e NI 90V, (x,¥)=(-11.8250,-12.9000) mm
0.02—
0.015—
0.01— B :
0.005— j
T ! = l l ‘ | l l

12.88

= [mml

‘PZ.?B 12.8 12.82 12.84 12.86

Daniel Muenstermann

W (S VLT Uy b VAT

G. Kramberger

>
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500
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250 300 350 400 450
x [um]

420

Pixel width of 125 um
[ww] x
L1 SLLL- 8'LL-

M. Brunetti, M. Fernandez Garcia, DM

G8LL- 6L S6' -

SL0—
no crosstalk
20—

Se0—

CERN/UniGe
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v2: Ljubljana

* |mproved analysis effort: time to reach 50% of the charge

5160 e
E [V, =0V 5 e B ——V_, =0V
5140 %, F sub™
>E = —._Vsub='10 A 5140 i
120F——V_, =-20 V B
os|- b 100 &
[~ +Vsub='40 v -
= 80—
60 :__'i."_vsub='60 Vv 60 f_
40 40 f—
20— 20 f—
Ot ne
L L L L L L 1 1 L L L L L 1 L | 1 1 L I L 1 I:
0 20 40 60 80 100 120 0 -
y - position [um] x position [ pm]
t,, as a function of y position at different voltage:
: x in the middle of the pixel = Vsub'o.,g §
% 140-V_ ,=-60 V % 180 Vou=-20 V
= . F E b —— V=30V
3 120— £160— — V=40 V
0 o r k] ~
E 100— = 140~ — V=60V
n 2 3. F
E 80— § 120 ;—
2 —
x 60— H 100 =
v £ 80—
(AN 40— £F
60—
) 20= - ==
> 40 «—>
o — o . Epe— : -
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< v G. Kramberger y position [um]



Active Pixel Sen

UNIVERSITE DE GENEVE

v2: Ljubljana
= Repeated measurement, but additional analysis effort: time to reach
50% of the charge

= Conclusions:

= ~7um depletion zone
= 35% of signal due to drift at -60V

= Rather indirect way of measurement, so...

X in the middle of the pixel

z 14oEV ,=-00V
3 120 y=5 um
=3 C y=15 um
E 100 Y26
C y=35 um
80 — y=45 um
60:— y=65 um
- y=75 um
40 —
20— //%gﬂ-_

0 :100 200 300 400 500 600 700 800 900

v

t[ns]
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t,, as a function of y position at different voltage:

time to reach 50% of the max. [ns]
= == - - N
P (=1] 0 N B [=1] -] o
[=] o o o o o o o
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= Direct access to 100 x 100 pm passive diode, outside of matrix, no

direct neighbours

= used different high-bandwidth (GHz) current-sensitive amplifiers
= keep in mind that now the transient is current, integral is charge

= do suffer from non-matched impedaces — many reflections
= working on an improved PCB, put 5m cable in between — big reflection

after 50ns

= diffusion slow, not many reflections

= Divided contributions:
= fast: <~ 3ns
" slow: 3-~70ns
= Laser width: ~9 pm (x-scan)

-Sum$((volt-BlineMean) *(time>6.7 && time <9.7)):x
¥ / ndf

vertical shift
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) 20 40 '_ 6O
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= Comparing transients

= Top: inside drift zone

= similar, irradiated returns to
baseline faster — less signal?
Small diffusion component from
lateral diffusion?

Bottom: inside diffusion zone

= gmaller absolute scale!

lots of slow diffusion before
irradiation, only some drift after
irradiation

Active Pixel Sen
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volt-BlineMean:time-16.3 {x==6.71 && z==4.97}
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XZ-scans:
= Fast signal integral as color
= both at -60V and at room
temperature
= Top: unirradiated
= Bottom: 1e15 neg/cm2 n-irrad

= Key observations
= look very similar
" no significant reduction

= post-irrad shows “hotspots”

= peaks in electric field? Charge
amplification?

Active Pixel Se
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unirrad
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XZ-scans:
= Slow integral as color
= both at -60V and at room
temperature
= Top: unirradiated
= Bottom: 1e15 neg/cm2 n-irrad

= Key observations

= extended diffusion zone
underneath and laterally of drift
zone before irradiation

= diffusion (almost) gone after
irradiation, red spots are
undershoots from fast drift signal
— artifacts

=k

&%

C. Weisser, M. Fernandez Garcia, DM
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Z\/-scans:

= Fast integral as color
= between OV and -60V

= Top: unirradiated
= Bottom: 1e15 neg/cm2 n-irrad

= Key observations

= zone of large drift signal extends

= to be convoluted with the 9 pm -
sigma of the laser!

= working on deconvolution -
= afer irradiation very little signal at 1e15 neg/cm?2
OV — otherwise very similar...

= rad-hard?

unirrad

45

455

=16

Active Pixel Se
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Z\/-scans:

= Slow integral as color unirrad
= between OV and -60V

= Top: unirradiated
= Bottom: 1e15 neg/cm2 n-irrad

= Key observations

= diffusion zone is “pushed down”
from growing drift zone, but
thickness stays ~constant

= very little diffusion after |rrad|at|gp
(different color codel)
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v3 — higher fluences

= 1e15 neg/cm2 measurements
still done at RT w/o cooling

= 7e15 neg/cm2 only stable until
~23V, then cooling required

= also reaches “defined”
breakdown voltage of ~93V, no
change

= 3ns integral charge ~unchanged
wrt to 1e15 neg/cm?2 sample

= peaks in collected charge at
edges of implant — high field
regions?

Active Pixel Se

-4.78

-4.82

-4.84

-4.86

-4.88

Janiel Muenstermann

N
-4.8

7el5 neg/cm2

-4.82 ||

i

632 634 636 638 64 642 644 BH46 648 B5 652
X

-4.84

-4.86

-4.88

-4.9

7el5 neg/cm2

-4.8

-4.9

-30

-80 -70 -60 -50 -40 -30 -20 -10 0

Vhias



UNIVERSITE DE GENEVE

larger?

= Measurements still ongoing, very
preliminary
= maximum collected charge stays
similar to 1e15 sample

= ~expected: short drift distance, Neff
change still insignificant

= width of charge collection zone

= also non-symmetric — trapping? E-
Field at 7e15? Acceptor removal!
= TCAD simulations starting

-Sum$((volt-BlineMean)*(time>11 && time<14)):z {Vbias==-90}

Daniel Muenstermann
v3 — comparison of regions of fast charge collection

-Sum$((volt-BlineMean)*(time>23 && time<26)):z {Vbias==-60}
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wZ4v3 — comparison of regions of fast charge collection

= [ntegration over depth within 25ns for different fluences and bias voltages
= maximum for 7e15 — acceptor removal effect? Afterwards trapping kicks in?
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V2FEl4: Pixel readout

= Several (>20) HV2FEIl4s glued to FE-14
pixel readout chips
= using pick+place machines, precision
requirement estimated to <5 pm for
current bump-pads
= HV2FEI4 wirebonds done through hole in
PCB
= could be bumps or TSVs later | :
= unidirectional glues under study @ iy |
= adapter PCB in production allowing for & o1
single-sided wirebonding after gluing

SRR |

i
(AARRARALE

Adapter PCB

HVCMOS
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V2FEIl4: Pixel readout 800- Sub-Pixel 2 -
= ToT encoding: j:i
= 3 sub-pixels clearly distinguishable 20@
— sub-pixel encoding works! uuoﬁ

= to do: dynamic range matching, array tuning
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First data taken at 2013 DESY testbeams
= unirradiated and reactor neutron (JSI)
irradiated devices: 1e15 neg/cm2
= complex geometry complicates alignment
= non-optimal tunings lead to less efficiency

= tuning procedures quite fresh at time of
testbeam

= unintentional “skewed” tuning: ~700-1000 e-
= resulting efficiency unirradiated: ~95-80%

Janiel Muenstermann

V2FEI4: Pixel readout In testbeam
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V2FEI4: Pixel readout In testbeam

Efficiency Map

efficiency_20_effMap

= First data taken at 2013 DESY testbeams , s 5503 oy
= time-walk depending on threshold - low o - s (owsy  Gass|| o
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ZaNew tuning implemented, new telescope 2014

= Due to some issues with desynchronisation and the very small DUT
area, a new FE-l4-based telescope was built and Commissioggegco%et
CERN PS with special focus on HV-CMOS R&D  *_}’

planes
= Low energy beam (10 GeV) in
combination with large DUT 0Gev pry,,
distance (~25 cm) lead to rather
large residuals/pointing uncertainty
= subsequent run at SPS

= No sub-pixel encoding this time,
merged pixels to avoid ambiguities

Isometric view
1:3

Pixels of 100 x 250 DUT Planco X
Unit cell DUT Plane0 Y ane ST el

DUTPlane0QY :
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O 30000
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Nevv tuning iImplemented, new telescope 2014

New noise tuning was implemented aiming to tune every pixel as low as
noise occupancy allows
= works in principle, matrix effects still to be studied

With unirradiated sample sees clear effect of bias voltage on efficiency

= low efficiency region at bottom are “rad-hard” pixels with higher threshold
setting — understood

= need to understand where/if ~3% efficiency are lost: multiple scattering,
interpixel field gaps, ...
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Rel. number of hits
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A glimpse on the next pixel prototype

= H18_v4

= focused on ATLAS-pixel readout, several noise
improvements, segmented pixels, analogue pixels
(25x250um), pulse-width encoding of sub-pixel address
promising better ToT encoding

= tunings to 300-400 electrons possible - N SE
= First preliminary testbeam results comparable, kS
>95% efficiency after irradiation (eff. lost at gaps)z ™ \
Threshold distribution é -
- threshDist E
e F Entries 288 E
2 100— 1 Mean  394.0 Z ol
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e r 2.
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Measured signals

S [ Gaussian fit: Sigma 30e

H18_v3: CLIC usage with 25x25 pm purely 500

analogue pixels s

= no digital activity in pixels, good noise perform%

* has been implemented in H18_v4 for ATLAS-
size pixels as well, analysis underway

300

= efficiency ~99.7% at ~1000 e threshold
= 3 pum gaps, efficiency loss only in corners due % 500 1000 150 2000 2500
to charae charinn __ Signal [e]
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= mu3e experiment at PSI: MuPix chip
= monolithic, only analogue pixel cell amplifier
= 80 um x 92 um pixel size
= >99% efficiency measured in test beam
= timing looks also promising
= only “drawback”: triggerless operation...

I It
| ‘ i | | |
(U O
uPix Prototype

Tem;ﬁéralure: 70°C

100'- HV: 70V

801 000y

T T T T T T T ] X 1.00263V
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A glimpse beyond pixels: the

Daniel Muenstermann
“strip” region

= Very large area (~200 m® of silicon)

20

= cost very important | strip detectors
Radiation damage limited - | E
= <1e15 neg/cm?2 g H | I I i
= <60 MRad ISR : T 5 i B et B ..:..._._._.:...,},,L

Occupancy rather low, but trigger =1 iBael  Forwmd Pixel Detector

and readout constraints challenging pixel detectors

ldea: “Almost HV-MAPS” 00 o5 10 15 20 25 30 35

Z {m)

= utilise existing trigger handling, pipeline and high-speed communication
as implemented in ABCN13 chip (or successors)

= replace analogue ROC components by in-sensor circuits
= preamplifier in pixel cell
= discriminator in periphery — LePix/MuPix concept, less noise/crosstalk

= “abuse” ABCN pipeline: instead of hit strip pattern store pixel addresses
= “digital encoding” rather than analogue encoding of hit along strip

ATLAS started a demonstrator programme with the goal of providing
full-size prototype modules by the end of 2015
= significant activity from “strip” institutes, HV/HR-CMOS explored
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< 1HVStrip chip concept

= Each pixel contains a preamplifier with dedicated trace to the periphery

= Periphery contains
= CFD-like timewalk-compensating discriminator

= priority encoder to realise a lossy constant latency readout scheme adapted
to the current strip readout architecture
CSA

Pixel contains a
charge sensitive
amplifier

Present scheme ABCN chip

1

—

1

—

NN NN

il

1

) Possible HYCMOS scheme Digital chip
% 0 1 ] 2 5[0
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= 000 0= 4 R
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VStrip chip concept
= Each pixel contains a preamplifier with dedicated trace to the periphery

= Periphery contains
= CFD-like timewalk-compensating discriminator
= priority encoder to realise a lossy constant latency readout scheme adapted
to the current strip readout architecture

= For 2x2.5cm large reticule can |
. Present scheme ABCN chip
accommodate 40x400um pixels even Va\

with 350 nm process (AMS H35) . 1
= much finer pitch than hybrid solution _/\7 K
(74.5 pm) I | [ 1
= current ABCN pipeline is 256 bits I\ 1
wide — need ~16 bits to store pixel
& address, hence could store 16 Possible HVCMOS scheme Digital chip
GC) concurrent hits per BC 0 1 7 > 510
7)) * much more than necessary for
D average occupancy — _ :
& e
o
® 6 N
2
5 | [ | [ ]
<
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First prototype

H35_v1
= combines (very) small pixel array and test structures
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First prototype

H35_v1
= analogue 40 x 400 um pixels with traces to the

periphery
= periphery not optimised and much larger than it
would be in real size sensor (just few %)
= discriminator block contain standard and “constant
fraction disciminator”-like circuits aiming for
improved time-walk

= digital encoding, followed by 320 MBit/s LVDS
readout, two concurrent hits can be read out

= several test structures for rad-hardness testing

= very first measurements being done, chip is alive —
more to come
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R-CMOS

= Main requirement for drift-based CMQOS sensor is a deep n-well
= also present in CIS (CMOS Image Sensor) processes with high-resistive
substrate or epi layer — larger depletion depth
= certainly larger initial signal, reduction of depletion depth to be studied
= charge sharing possible again allowing to higher resolution at low fluences
= Several CMOS imaging processes available from different foundries
= back-side illumination requires full depletion and thin sensors
= high-resistivity FZ base material available in an industrialised process

= HV-CMOS appears to be “on the edge” wrt to Signal/Threshold
* increase signal by more depletion? How much? Equally radiation-hard?
= 2 directions: “moderate” (100 Ohm*cm) vs. “high” (kOhm*cm) resistivity

i Pixeli i Pixel i+1

5
front-end
@) | | fonver / = —
% f;‘ N N N N
f "
/ i ' [ Pw
w f HV deep N-well i o
i s
e § & Péep Mwell Deep Mwell
g<> ____________ S————— ) T S— : —
- — I ~1000 e 3 : | A
Depleted particle track @y
m ® {~B80 e-fum) K |
m detector \ I -
~1000e ' P-substrate
> P-substrate L Not depleted +
o —
8 CMOS electronics placed inside the diode (inside the n-well) <10
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R - C M OS i N "‘N [N ] r!l_
= Many different designs possible: m o L

= HV-CMOS like (deep n-well, no triple-well) = L

= triple-well

= Alice-like *
- NW - PWELL % MWELL

g SSSSSSSSSS - Pwe" - = o N-BURIED =

= MQL_{ . P-substrate e

- 40V (AS LOW AS POSSIBLE)

= First prototypes have been produced within ATLAS
= characterisation, irradiations ongoing
= no time to go into detail

= “Moderate” resistivity submissions of “HV-CMOS” designs planned for
early 2015

= expect signal incrase of a factor 2-5 while still being radiation-hard thanks
to (comparatively) short drift lenghts

Active Pixel Sensor
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n)*(time>11 && time<14))

-Sum$({volt-BlineMea

UNIVERSITE DE GENEVE Daniel Muenstermann
Conclusions

HV/HR-CMQOS processes might yield radiation-hard, low-cost,
Improved-resolution, low-bias-voltage, low-mass active pixel sensors

Process can be used for

= ‘'active' n-in-p sensors (with capacitive coupling)

= drift-based close-to-MAPS chips (digitally encoded strips)
First prototypes being explored within ATLAS

= |rradiated samples show radiation hardness
= results with capacitively coupl -CMOS pixel sensors look promising

-Sum$((volt-BlineMean)*(time>11 && time<14)):z {Vbias==-90}
DUT Plane0 Efficiency Map
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Next step: Explore higher resistive substrates to slightly increase signal
= engineering run with large-scale sensor planned for early 2015

(ATLAS) goal: Have “demonstrators” in hand by the end of 2015
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Test beam results: monolithic

= excellent resolution
= very good S/N ratio

= efficiency limited by readout artifacts:
= column-based readout
= row not active during readout
= data analysis did not correct for this
= very small chip — low statistics

| Efficiency vs subpixel particle position in X/Y I
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Efficiency vs. the in-pixel position of the fitted hit.
Efficiency at TB: ~98% (probably due to a rolling
shutter effect)
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°<' CPPD prototype results

Daniel Muenstermann

| I Efficiency - window 800ns |
1.0
= excellent noise behaviour: stable p—
threshold at ~330 electrons ] G =2te S =20
= good performance also after irradiation  § ] a
%‘J 0.4 - E
&
irpel 1 i
Power supply for the readout chip |
and cont. signals l 4 0.0-
for the sensor 1.5mm 4

220 240 260 280 300 320 340 !

Signal [e]

Detection efficiency vs. amplitude
Detection of signals above 330e
possible with >99% efficiency.
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Mot irradiated

= number af signals

0o

UNIVERSITE DE GENEVE
CPPD prototype results

* [rradiation with 23 MeV protons: 1e15 neg/cm2, 150MRad
= FE-55 performance recovers after slight cooling
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RMS Noise 12 e
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