
Light Singlinos in the NMSSM:

Challenges for Susy Searches at the LHC

U. Ellwanger, LPT Orsay, with A. M. Teixeira (1406.7221)

"Missing" missing transverse energy:

Consider a (possible) last step in a Susy particle decay cascade from a next-to-lightest Susy particle (NLSP) into the LSP + X,

where "X" decays into SM particles (X= Higgs boson, Z,...) Usually χ_1^0 leads to missing transverse energy

If the available phase space is narrow, $M_{NLSP}-(M_{LSP}+M_X)\ll M_{NLSP}$, the energy (momentum) E_{LSP} transferred from the NLSP to the LSP is proportional to the ratio of masses:

$$\frac{E_{LSP}}{E_{NLSP}} \simeq \frac{M_{LSP}}{M_{NLSP}}$$

 \rightarrow If the LSP is light and $M_X \sim M_{NLSP} - M_{LSP}$, little (missing transverse) energy is transferred to the LSP; the transverse energy is carried away by X

 \longrightarrow If X decays do not give rise to E_T^{miss} , the E_T^{miss} signature disappears!

Possible in the MSSM? A light (\sim few GeV) LSP has to be bino-like (higgsinos/winos have charged SU(2) partners)

- → Squarks (with hypercharge!) etc. would prefer to decay directly into the LSP, without the NLSP in the decay cascade
- \rightarrow The effect would be rare

In the NMSSM, the neutralino₁ can be mostly "singlet-like" with small couplings to all sparticles; then

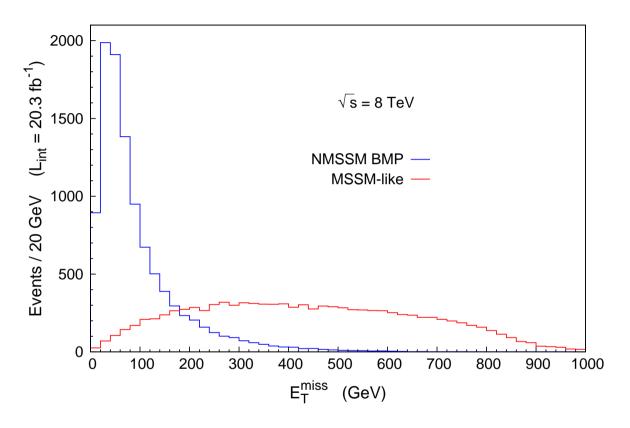
- all sparticle decay cascades end up "provisionally" in the (bino-like) NLSP; only subsequently the NLSP decays into the LSP+Higgs (H_{125}) , or a lighter NMSSM-Higgs)
- Then: all sparticle decay cascades contain a Higgs boson
- the missing energy in sparticle decay cascades is strongly reduced
- → lower bounds on squark/gluino masses from run 1 at the LHC are considerably alleviated
- searches for Higgs pairs (+ jets) at 13/14 TeV are the relevant search channels for Supersymmetry

Which Higgs?

 H_{SM} : Has leptonic decays $H_{SM} \to WW^*/ZZ^* \to ...$ which lead to some E_T^{miss}

Worst case with little E_T^{miss} : H_1 , a NMSSM specific light Higgs boson with $M_{H_1} < M_Z$ (Just occasionnaly: $H_1 \to \tau^+ \tau^- \to \dots$ + neutrinos)

If squarks decay directly into the bino (no Zs/Ws in the cascades, which decay possibly into neutrinos):

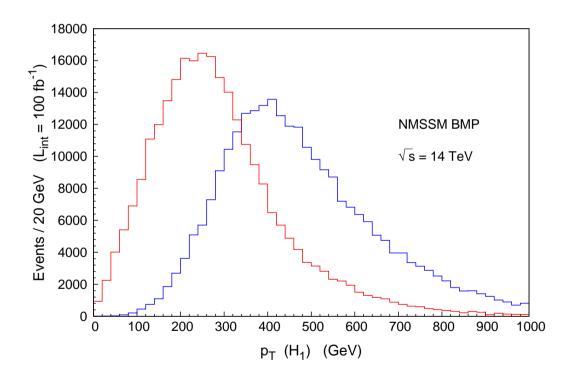

A benchmark point with

 $M_{NLSP\equiv bino}\sim$ 89 GeV, $M_{H_1}\sim$ 83 GeV, $M_{LSP\equiv singlino}\sim$ 5 GeV, $M_{squarks}\sim$ 860 GeV, $M_{gluino}\sim$ 890 GeV, $M_{stops,sbottoms}\sim$ 810 - 1060, passes all LHC constraints

Strongest constraints come from searches for multijets incl. multi-b-jets (searches for RPV), not from standard SUSY searches incl. E_T^{miss}

Cross section possibly much larger than SM Higgs pair production; here: $\sim~5.2~\text{pb}$

Spectrum of E_T^{miss} from squark/gluino production at 8 TeV:


- in the MSSM with a 89 GeV bino as LSP, would be ruled out!
- in the NMSSM with the additional bino $\rightarrow H_1+$ singlino cascade

The only LHC allowed scenario with all sparticle masses below ~ 1 TeV!

Simple squark→quark+bino cascade:

Properties of the final state:

Hard jets + two (boosted) Higgs states with large p_T :

(Blue: leading Higgs; red: Next-to-leading Higgs boson)

Possible search strategy at the LHC at 13/14 TeV:

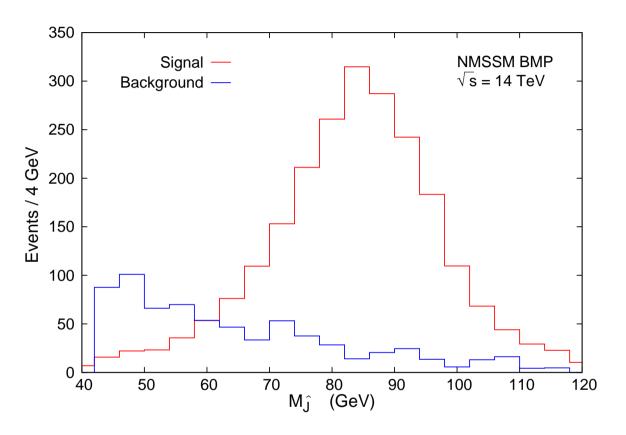
- Require four hard jets, e.g. with $P_T \geq$ 400, 200, 80, 80 GeV (from, e.g., $2 \times (\tilde{q} \rightarrow q + bino \rightarrow q + singlino + H_1$ and/or $\tilde{g} \rightarrow q + \tilde{q} \rightarrow ...$)
- Instead of E_T^{miss} , look for remnants of two H_1 Higgs bosons: These decay with slightly larger BRs than H_{SM} into $b\bar{b}$ (\sim 85%) and into $\tau^+\tau^-$ (\sim 8%)
- Ask for two b-jets and two τ_h ($M_{2\tau} < 120$ GeV); try to reconstruct the a priori unknown Higgs (H_1) mass from two b-jets

(The results below are based on simulations with MadGraph5+1j, Pythia, Delphes)

Case of boosted Higgses: Analyse the final state twice

First:

— since the H_1 decay products are boosted, look for two "slim" b-jets and two τ_h using anti- k_T jet-finding algorithm with small cone size R=0.15 (simulation assumes calorimeter cells with $\Delta\varphi$, $\Delta\eta\simeq0.1$)

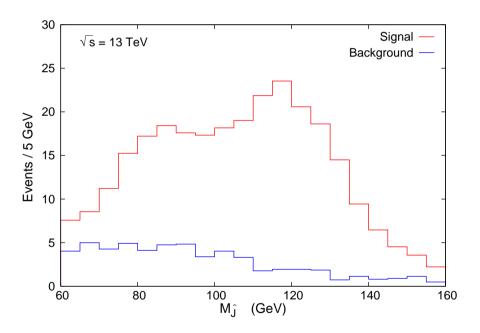

Define a 2b pseudo-jet 2bPJ as the sum of both b-tagged jets (assumed: 70% b-tag efficiency)

Second:

- Apply the anti- k_T jet-finding algorithm again, with R=0.5
- \longrightarrow The two boosted b-jets tend to merge into a single fatter jet \widehat{J} ;

Look for the jet \widehat{J} with $p_T >$ 400 GeV closest in ΔR to the previously found 2bPJ

Invariant mass of \hat{J} (event numbers after $100fb^{-1}$ at 14 TeV):



 \rightarrow The signal is there! Recall: $M_{H1} = 83$ GeV

Of course: for heavier squarks/gluinos the H_1 production cross section (here: \sim 5.2 pb) would go down; for different M_{H_1} the height of the peak remains the same.

Dominant background from QCD: 2 jets + $b\bar{b}$ + 2 fake τ 's

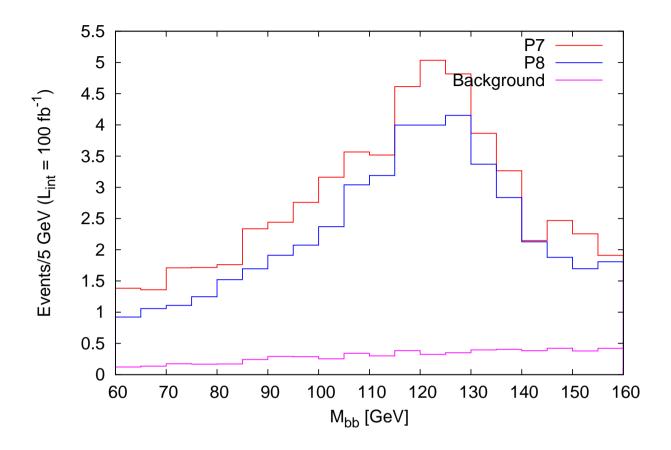
Case of a 130 GeV bino with branching fractions both into H_1 with $M_{H_1}=83$ GeV, and H_{125} :

 \rightarrow "Twin peaks" are possible (Here: ~ 1 TeV squarks/gluinos, harder cuts to suppress background)

Longer squark decay cascades, and $M_{\rm bino} \gtrsim H_{125}$:

$$ilde{q} o q + ilde{g}, \; ilde{g} o q + ilde{q} \; + \; {\rm bino},$$
 or $ilde{g} o t + ilde{t}, \; ilde{t} o t \; + \; {\rm bino}, \; {\rm bino} o H_{125} + \; {\rm singlino}:$

Higgses are less boosted, $H\to b\bar b$ gives two separate jets visible with R= 0.4 jet algorithms; their invariant mass M_{bb} should peak at $M_{\rm Higgs}$


Examples (from "to appear"):

Benchmark point P7:

$$\tilde{q}_{1.5\,TeV} o q + \tilde{g}_{1.3\,TeV} o q + t + \tilde{t}_{750\,GeV} o q + t + \bar{t}$$
+bino, bino $o H_{125}$ +singlino

Benchmarkpoint P8: same with $t \leftrightarrow b$

 \longrightarrow Many jets, many b-quarks (some E_T^{miss} from leptonic t-decays)

 M_{bb} for the benchmark points P7 and P8

After cuts on four hard jets with $P_T \geq$ 400, 300, 200, 100 GeV and requiring two hadronic au-leptons with combined $P_T \geq$ 100 GeV

 \rightarrow Visible after a few 100 fb⁻¹ luminosity

Conclusions:

The NMSSM with a light singlino LSP can lead to blind spots in standard SUSY search channels, due to "missing" E_T^{miss}

- \rightarrow The present scenario is consistent with constraints from run I with both squark and gluino masses of \sim 900 GeV
- \rightarrow Production cross sections up to \sim 5 pb at 13/14 TeV are possible (compared to \sim 30 fb for Standard Model Higgs pair production)

Dedicated search strategies for Higgs pairs plus many jets are required

→ may lead to a discovery of both Supersymmetry and, possibly, additional NMSSM specific Higgs bosons