Detectability of light pseudoscalars in the NMSSM, 1409.8393

N.-E. Bomark¹ S. Moretti², S. Munir³, L. Roszkowski¹

¹NCBJ, Warsaw ²University of Southampton ³APCTP, Pohang

Dec 8, 2014/ lhc-higgs-bsm

★ @ ▶ ★ 注 ▶

Outline

NMSSM and light pseudoscalars

The Higgs sector of the NMSSM Scanning the NMSSM Scan results

LHC analyses

Cuts and backgrounds Results $H_1 = H_{SM}$ Results $H_2 = H_{SM}$

Future prospects and conclusions

Summary of results Shortcomings and possible improvements Conclusions

(4回) (日) (日)

The Higgs sector of the NMSSM Scanning the NMSSM Scan results

Outline

NMSSM and light pseudoscalars

The Higgs sector of the NMSSM Scanning the NMSSM Scan results

LHC analyses

Cuts and backgrounds Results $H_1 = H_{SM}$ Results $H_2 = H_{SM}$

Future prospects and conclusions

Summary of results Shortcomings and possible improvements Conclusions

イロト イポト イヨト イヨト

The light pseudoscalar

 m_{A_1} is essentially a free parameter in the theory. Many searches $m_{A_1} < 10$ GeV. 0805.3505, 1101.1137, 1206.6326, 1210.7619. We focus mostly on $10 < m_{A_1} < m_{H_{SM}}$. Hard to detect directly: no VBF nor Higgstrahlung, gluon fusion small. Maybe associated $b\bar{b}A_1$ production? 1105.4191 Our studies shows no hope there either. We must then rely on decays from heavier particles. Our focus is $H \rightarrow A_1A_1$ and $H \rightarrow A_1Z$.

イロト 不得 とうほう 不良 とう

ъ

The light pseudoscalar

 m_{A_1} is essentially a free parameter in the theory. Many searches $m_{A_1} < 10$ GeV. 0805.3505, 1101.1137, 1206.6326, 1210.7619. We focus mostly on $10 < m_{A_1} < m_{H_{SM}}$. Hard to detect directly: no VBF nor Higgstrahlung, gluon fusion small. Maybe associated $b\bar{b}A_1$ production? 1105.4191 Our studies shows no hope there either. We must then rely on decays from heavier particles. Our focus is $H \rightarrow A_1 A_1$ and $H \rightarrow A_1 Z$.

イロト イポト イヨト イヨト 三日

The light pseudoscalar

 m_{A_1} is essentially a free parameter in the theory. Many searches $m_{A_1} < 10$ GeV. 0805.3505, 1101.1137, 1206.6326, 1210.7619. We focus mostly on $10 < m_{A_1} < m_{H_{SM}}$. Hard to detect directly: no VBF nor Higgstrahlung, gluon fusion small. Maybe associated $b\bar{b}A_1$ production? 1105.4191 Our studies shows no hope there either. We must then rely on decays from heavier particles. Our focus is $H \rightarrow A_1A_1$ and $H \rightarrow A_1Z$.

イロト 不得 とうほう 不良 とう

The Higgs sector of the NMSSM Scanning the NMSSM Scan results

The SM-like Higgs mass in the NMSSM

The extra scalar gives an additional contribution to the Higgs mass

 $\lambda^2 \nu^2 \sin^2(2\beta).$

It is also possible to have a mostly singlet like scalar lighter than $H_{\rm SM}$ and then the mixing gives:

$$\begin{pmatrix} M_H & m \\ m & m_S \end{pmatrix} \Rightarrow M_{H_1,H_2} = \frac{M_H - m_S}{2} \pm \sqrt{\frac{(M_H - m_S)^2}{4} + m^2}.$$

ъ

 NMSSM and light pseudoscalars
 The Higgs sector of the NMSSM

 LHC analyses
 Scanning the NMSSM

 Future prospects and conclusions
 Scan results

The SM-like Higgs mass in the NMSSM

The extra scalar gives an additional contribution to the Higgs mass

 $\lambda^2 \nu^2 \sin^2(2\beta).$

It is also possible to have a mostly singlet like scalar lighter than $H_{\rm SM}$ and then the mixing gives:

$$\left(egin{array}{cc} M_H & m \ m & m_S \end{array}
ight) \Rightarrow M_{H_1,H_2} = rac{M_H - m_S}{2} \pm \sqrt{rac{(M_H - m_S)^2}{4} + m^2}.$$

 NMSSM and light pseudoscalars LHC analyses
 The Higgs sector of the NMS

 Future prospects and conclusions
 Scan results

Constraints

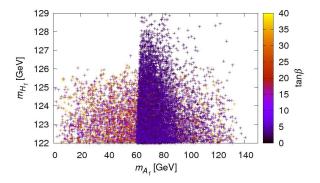
- ▶ 122 < m_{H_{SM}} < 129 GeV,</p>
- *m*_{A₁} ≤ 150 GeV,
- Ω_χ h² < 0.131,
 </p>
- ▶ $BR(B_s \rightarrow \mu^+ \mu^-) = (3.2 \pm 1.35 \pm 0.32) \times 10^{-9},$
- ► $BR(B_u \rightarrow \tau \nu) = (1.66 \pm 0.66 \pm 0.38) \times 10^{-4}$,
- ► BR $(b \to s\gamma) = (3.43 \pm 0.22 \pm 0.21) \times 10^{-4}$.

ATLAS: $\mu^{\gamma\gamma} = 1.57^{+0.33}_{-0.28}$, $\mu^{ZZ} = 1.44^{+0.40}_{-0.35}$. CMS: $\mu^{\gamma\gamma} = 1.13 \pm 0.24$, $\mu^{ZZ} = 1.0 \pm 0.29$.

イロト イ理ト イヨト ・

ъ.

The Higgs sector of the NMSSM Scanning the NMSSM Scan results

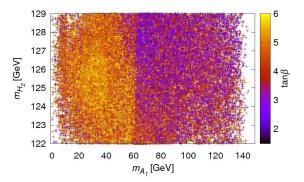

Parameter ranges

Bayesian scan using MultiNest,					
see our paper 1409.8393 for details.					
Parameter	Extended range	xtended range Reduced range			
<i>m</i> ₀ (GeV)	200 - 4000	200 – 2000			
<i>m</i> _{1/2} (GeV)	100 – 2000	100 – 1000			
A_0^{\prime} (GeV)	-5000 — 0	-3000 – 0			
$\mu_{ m eff}$ (GeV)	100 – 2000	100 – 200			
$\tan \beta$	1 – 40	1 – 6			
λ	0.01 – 0.7	0.4 – 0.7			
κ	0.01 – 0.7	0.01 – 0.7			
A_{λ} (GeV)	-2000 – 2000	-500 — 500			
A_{κ} (GeV)	-2000 – 2000	-500 — 500			

イロト イポト イヨト イヨト

The Higgs sector of the NMSSM Scanning the NMSSM Scan results

Scan results $H_1 = H_{\rm SM}$



No points $m_{A_1} < m_{H_1}/2$ in naturalness limit.

A B > 4
 B > 4
 B

The Higgs sector of the NMSSM Scanning the NMSSM Scan results

Scan results $H_2 = H_{SM}$

Easier to obtain heavy enough $H_{\rm SM}$.

NMSSM and light pseudoscalars LHC analyses Future prospects and conclusions LHC analyses Future prospects and conclusions

Outline

NMSSM and light pseudoscalars

The Higgs sector of the NMSSM Scanning the NMSSM Scan results

LHC analyses

Cuts and backgrounds Results $H_1 = H_{SM}$ Results $H_2 = H_{SM}$

Future prospects and conclusions

Summary of results Shortcomings and possible improvements Conclusions

イロト イポト イヨト イヨト

Cuts and backgrounds Results $H_1 = H_{SM}$ Results $H_2 = H_{SM}$

Acceptance cuts

- $|\eta| < 2.5$ for all final state objects,
- $p_T > 15$ GeV for all final state objects,
- $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.2$ for all *b*-quark pairs,
- $\Delta R > 0.4$ for all other pairs of final state objects.

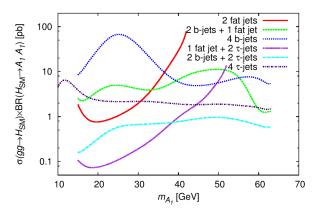
イロト イポト イヨト イヨト

NMSSM and light pseudoscalars LHC analyses Future prospects and conclusions Cuts and backgrounds Results $H_1 = H_{SM}$ Results $H_2 = H_{SM}$

Backgrounds

Irreducible backgrounds obtained from MadGraph.

Channel	Background cross section	
bbbb	3400 pb	
$bar{b} au^+ au^-$	3.1 pb	
$\tau^+ \tau^- \tau^+ \tau^-$	5.4 fb	
bbZ	126 pb	
$ au^+ au^- Z$	0.46 pb	

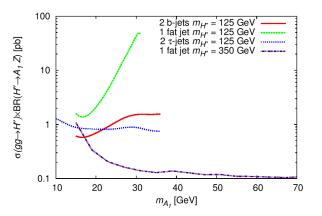

Signal and (parton level) background hadronised and clustered in Pythia.

Jet substructure methods (0802.2470) used to find "fat jets" consisting of 2 b-jets.

ヘロト 人間 とくほとくほとう

NMSSM and light pseudoscalars LHC analyses Future prospects and conclusions LHC analyses Eutre prospects and conclusions

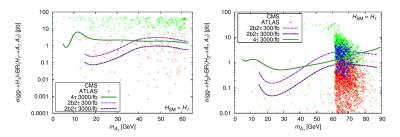
Sensitivity A₁A₁


The $b\bar{b}\tau^+\tau^-$ channel most promising.

A D > A B >

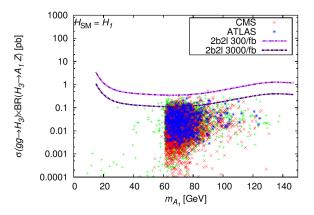
ъ

NMSSM and light pseudoscalars LHC analyses Future prospects and conclusions LHC analyses Eutre prospects and conclusions


Sensitivity A₁Z

Most efficient for a heavier scalar.

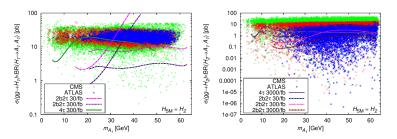
Cuts and backgrounds **Results** $H_1 = H_{SM}$ Results $H_2 = H_{SM}$


Sensitivity in A_1A_1 channel

Some hope for detection but limited number of points.

Cuts and background: Results $H_1 = H_{SM}$ Results $H_2 = H_{SM}$

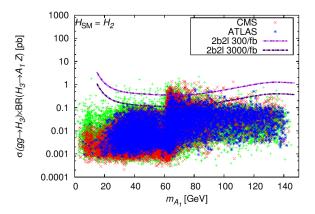
Sensitivity in A_1Z channel



At least HL-LHC may discover something.

< 一型

Cuts and backgrounds Results $H_1 = H_{SM}$ Results $H_2 = H_{SM}$


Sensitivity in A_1A_1 channel

The LHC should exclude $m_{A_1} \lesssim 60$ GeV.

Cuts and backgrounds Results $H_1 = H_{SM}$ Results $H_2 = H_{SM}$

Sensitivity in A_1Z channel

Enough detectable points to motivate further study.

 NMSSM and light pseudoscalars LHC analyses
 Summary of results Shortcomings and possible improvements

 Future prospects and conclusions
 Conclusions

Outline

NMSSM and light pseudoscalars

The Higgs sector of the NMSSM Scanning the NMSSM Scan results

LHC analyses

Cuts and backgrounds Results $H_1 = H_{SM}$ Results $H_2 = H_{SM}$

Future prospects and conclusions

Summary of results Shortcomings and possible improvements Conclusions

イロト イポト イヨト イヨト

Summary of results Shortcomings and possible improvements Conclusions

(日) (四) (日) (日) (日)

э

Detectability ranges

Production mode	Final states	Accessibility	Range (GeV)
b̄bA ₁	4b, 2b $2 au$	X	
$H_1 \rightarrow A_1 A_1 (H_1)$	4b, 2b $2 au$, 4 $ au$	🗸 300/fb	<i>m</i> _{A1} < 63
$H_1 ightarrow A_1 A_1 (H_2)$	4b, 2b $2 au$, 4 $ au$	✓ 30/fb	$m_{A_1} < 60$
$H_1 ightarrow A_1 Z$	2b2 ℓ , 2 $ au$ 2 ℓ	X	
$H_2 \rightarrow A_1 A_1 (H_1)$	4b, 2b $2 au$, 4 $ au$	✓ 300/fb	$60 < m_{A_1} < 80$
$H_2 ightarrow A_1 A_1 (H_2)$	4b, 2b $2 au$, 4 $ au$	✓ 30/fb	<i>m</i> _{A1} < 63
$H_2 ightarrow A_1 Z$	2b2 ℓ , 2 $ au$ 2 ℓ	X	
$H_3 ightarrow A_1 A_1$	4b, 2b $2 au$, 4 $ au$	X	
$H_3 ightarrow A_1 Z$	2b2 ℓ , 2 $ au$ 2 ℓ	✓ 300/fb	$60 < m_{A_1} < 120$

イロト 不得 とうほう 不良 とう

3

Some points for future studies

- The "tagging" is done from MC truth with average efficiencies added as factors on *σ*.
- Only irreducible backgrounds included, e.g. no $t\bar{t}$.
- No detector effects nor triggering are included.
- ► Cuts are not optimised. Especially for H₃ → A₁Z, harder cuts may improve sensitivity.
- Maybe improved jet substructure technics.
- Improved tau reconstruction, e.g. collinear approximation.
- Fitting to kinematic distributions, rather than just using S/\sqrt{B} per bin.

イロト 不得 とうほう 不良 とう

ъ

Some points for future studies

- The "tagging" is done from MC truth with average efficiencies added as factors on *σ*.
- Only irreducible backgrounds included, e.g. no $t\bar{t}$.
- No detector effects nor triggering are included.
- ► Cuts are not optimised. Especially for H₃ → A₁Z, harder cuts may improve sensitivity.
- Maybe improved jet substructure technics.
- Improved tau reconstruction, e.g. collinear approximation.
- Fitting to kinematic distributions, rather than just using S/\sqrt{B} per bin.

Conclusions

- Due to the extra singlet, the NMSSM may feature a very light pseudoscalar.
- In the most natural region (large λ, small tan β) the LHC will practically exclude m_{A1} < 60 GeV.</p>
- For somewhat heavier pseudoscalars, H₃ → A₁Z is a very interesting channel.

イロト 不得 とうほう 不良 とう