FCC-WG, 12.12.2014

High luminosity experiment with FCC injector

(what is possible ?)

Assumption: re-use of LHC

Previously discussed - no experiment

Minimal invasive, still two crossings needed:

- IP1: extraction, both beams (no more crossing)
- IP2: injection (no more crossing)
- IP3 and IP7 : collimation
- IP4: RF (+ crossing)
- IP5: standard optics (no more crossing)
- IP6: beam dump
- IP8: injection (+ crossing)

Assumed layout:

- Solutions for the IPs available

Including high luminosity collisions:

- High luminosity experiment

 $\mathcal{L} \xrightarrow{\text{desired}} \mathbf{1.0} \cdot \mathbf{10}^{35} \text{ cm}^{-2} \text{ s}^{-1}$

needs low β^* , no more regular (FODO) lattice

- Assumption: E = 3.3 TeV (other energies maybe difficult to operate together with injector, t.b.d.)
- With previously assumed layout: possible only in IP8

Low β^* in IP 8

- Implies: injection together with low β !
- Constraints on phases and geometry in the IR !
- Likely to limit minimum $\beta^* \ge 0.4$ m (optimistic)
- Beam parameters (assume HL-LHC values):

 $N_b = 2.2 \cdot 10^{11}, \epsilon_n = 2.5 \ \mu m$

- Maximum $\mathcal{L} \xrightarrow{\text{maximum}} 0.4 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

Fortunately ...

- Proposed geometry for FCC-hh requires also extraction (at least one beam) in IP8
- Would imply: low β , crab crossing, injection, extraction in IP8 !
- Very impractical (aka impossible)
- Revised crossing scheme

Modified layout

- IPs 3, 4, 6, 7 not changed
- No crossing in IP8: injection and extraction !
- No crossing in IP2: injection
- Crossing in IP1 (together with 1 extraction)
- Crossing and low β experiment in IP5 (easier, nothing else)

Layout of LHC

(non-intersecting version)

Luminosity performance - required β^*

- Assumptions E=3.3 TeV, $N_b = 2.2 \cdot 10^{11}$, $\epsilon_n = 2.5 \ \mu m$

- For $\mathcal{L} \approx 0.5 \ 10^{35}$: $\beta^* \approx 0.40 \text{ m}$ (conservative, achieved)
- For $\mathcal{L} \ge 1.0 \ 10^{35}$: $\beta^* \le 0.18$ m (in theory !)

Reminder:

Long range beam-beam requires crossing angle α normalized separation in drift space (for small enough β^*):

$$d_{sep} = \alpha \cdot \frac{\sqrt{\beta^* \cdot \gamma}}{\sqrt{\epsilon_n}}$$

Possible parameters - (full) crossing angle

- Required crossing angle for 12 σ separation:

 $\beta^* = 0.40 \text{ m} \rightarrow \alpha \approx 500 \ \mu \text{rad}$ $\beta^* = 0.15 \text{ m} \rightarrow \alpha \approx 860 \ \mu \text{rad}$

Reminder:

Crossing angle reduces the luminosity:

$$L/L_0 = F = 1/\sqrt{1 + \left(\frac{\alpha \cdot \sigma_z}{2\sigma^*}\right)^2}$$

assume round beams (σ* in crossing plane)
σ_z r.m.s. bunch length
large angle, long bunches and small β* reduce luminosity (so does small ε)

Possible parameters

- Reduction factor due to crossing angle

$$\beta^* = 0.40 \text{ m: } L/L_0 = 0.88$$

$$\beta^* = 0.15 \text{ m: } L/L_0 = 0.53 !$$

→ Requires crab crossing scheme (not yet demonstrated)

with/without crab crossing schemes

- Luminosity with and without reduction factor
- Below $\beta^*~pprox$ 0.3 m, practically no gain
- \blacktriangleright Crab crossing required for $\mathcal{L} \geq 1.0 \cdot 10^{35} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1})$

Conservative low β optics in IR5

- Standard L^* , round beams
- Crossing in IP5, $\beta^* = 0.40$ m, $\hat{\beta} \approx 6$ km

Low β optics in IR5

- Comparison: $\beta^* = 0.15 \text{ m versus } \beta^* = 0.40 \text{ m}$

- Crossing in IP5, $eta^*=$ 0.15 m, $\hat{eta}~pprox$ 20 km

Crossing schemes - options

Vertical or horizontal ?

- Vertical:
 - Some residual dispersion
 - Rather flexible (sign and size)
- Horizontal:

No dispersion in vertical plane (is it important ?) Less flexible (sign fixed)

- Still need crab crossing (not yet proven to work)
- Other options ?

Low β orbit in IP5

- Standard crossing angle, IP5, $\beta^* = 0.15$ m, $d_{sep} = 12$ σ
- Requires: $\alpha \approx \pm 430 \ \mu \mathrm{rad}$

Reduced L^*

Effect of a smaller L^*

- Can be used to reduce $\hat{\beta}$
- Or modified crossing scheme:
- → Make an additional, local crossing angle
 - Would require dipole magnets in drift space (like LHCb)
 - With correct (bad) sign: "effective" crossing angle smaller
- → Reduced geometric loss factor

Low β orbit in IP5

- Closed (short) bump around IP5

-
$$L^* = \pm 24$$
 m, $L^*_{exp} = \pm 12$ m

Reminder: spectrometer bump in LHCb

- Compensator bump at injection energy

Low β orbit in IP5

- Standard crossing angle plus bump, IP5

→ decreased separation near IP, smaller "effective" angle

Separation in IP5

→ decreased separation near IP, smaller "effective" angle ⇒ geometric loss much reduced (± 240 μ rad, ≈ 40% more)

Beam-beam effects

- Assume HL-LHC parameters
- Beam-beam parameter: $\xi \approx 0.01$ (achieved with more than one IP)
- Single IP, i.e. no compensation with alternating crossing, expect stronger PACMAN effects
- Overall long range effects smaller
- With bump: 6 of 30 LR encounters with 7 10 $\sigma,$ all others at 12 σ

Options (comparison with HL-LHC)

Possible luminosity performance:

E (TeV)	eta^*	α (μ rad)	\mathbf{L}_0	L	\mathbf{L}/\mathbf{L}_0
7.0	0.15 m	$2\cdot\ 295$	$2.4 \cdot 10^{35}$	$1.3 \cdot 10^{35}$	0.539
3.3	0.15 m	$2 \cdot 430$	$1.14 \cdot 10^{35}$	$0.61 \cdot 10^{35}$	0.539
3.3	$0.15 \mathrm{~m}$	$2\cdot$ (430 - 190)	$1.14 \cdot 10^{35}$	$0.86 \cdot 10^{35}$	0.755

- Assumptions:

Single low β insertion

2.2 $\cdot 10^{35}$ per bunch, bunch spacing 25 ns

 $\epsilon = 2.5 \ \mu m$

Round beams $(\beta_x^* = \beta_y^*)$

To sum up

Options:

- For $\mathcal{L} \ge 1.0 \ 10^{35}$: $\beta^* \approx 0.15 \ \mathrm{m} + \mathrm{crab} \ \mathrm{crossing}$
- For $\mathcal{L} \ge 0.5 \ 10^{35}$: $\beta^* \approx 0.40 \ \mathrm{m}$ (achieved ..)
- Without crab crossing $\mathcal{L} \ge 1.0 \ 10^{35}$ is out of reach (see HL-LHC)
- For $\beta^* = 0.15 \text{ m} + \text{bump: } \mathcal{L} \approx 0.8 0.9 \cdot 10^{35}$
- Simplest option: larger intensity per bunch $(N_b = 2.4 \cdot 10^{11})$