FCC-WG, 12.12.2014

High luminosity experiment with FCC injector
(what is possible ?)

Assumption: re-use of LHC

Previously discussed - no experiment

Minimal invasive, still two crossings needed:

- IP1: extraction, both beams (no more crossing)
- IP2: injection (no more crossing)
- IP3 and IP7 : collimation
- IP4: RF (+ crossing)
- IP5: standard optics (no more crossing)
- IP6: beam dump
- IP8: injection (+ crossing)

Assumed layout:

- Solutions for the IPs available

Including high luminosity collisions:

- High luminosity experiment
$\mathcal{L} \xrightarrow{\text { desired }} 1.0 \cdot 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
needs low β^{*}, no more regular (FODO) lattice
\Rightarrow Assumption: $\mathrm{E}=3.3 \mathrm{TeV}$ (other energies maybe difficult to operate together with injector, t.b.d.)

With previously assumed layout: possible only in IP8

Low β^{*} in IP 8

- Implies: injection together with low β !
- Constraints on phases and geometry in the IR !
- Likely to limit minimum $\beta^{*} \geq 0.4 \mathrm{~m}$ (optimistic)
- Beam parameters (assume HL-LHC values):

$$
N_{b}=2.2 \cdot 10^{11}, \epsilon_{n}=2.5 \mu \mathrm{~m}
$$

- Maximum $\mathcal{L} \xrightarrow{\text { maximum }} \mathbf{0 . 4} \cdot \mathbf{1 0}^{35} \mathbf{c m}^{-2} \mathrm{~s}^{-1}$

Fortunately ...

- Proposed geometry for FCC-hh requires also extraction (at least one beam) in IP8
- Would imply: low β, crab crossing, injection, extraction in IP8!
- Very impractical (aka impossible)
> Revised crossing scheme

Modified layout

- IPs 3, 4, 6, 7 not changed
- No crossing in IP8: injection and extraction!
- No crossing in IP2: injection
- Crossing in IP1 (together with 1 extraction)
\Rightarrow Crossing and low β experiment in IP5 (easier, nothing else)

Layout of LHC

(non-intersecting version)

Luminosity performance - required β^{*}

- Assumptions $\mathbf{E}=3.3 \mathrm{TeV}, N_{b}=2.2 \cdot \mathbf{1 0}^{11}, \epsilon_{n}=2.5 \mu \mathrm{~m}$
- For $\mathcal{L} \approx 0.510^{35}: \beta^{*} \approx 0.40 \mathrm{~m}$ (conservative, achieved)
- For $\mathcal{L} \geq 1.010^{35}: \beta^{*} \leq 0.18 \mathrm{~m}$ (in theory !)

Reminder:

Long range beam-beam requires crossing angle α normalized separation in drift space (for small enough β^{*}):

$$
d_{\text {sep }}=\alpha \cdot \frac{\sqrt{\beta^{*} \cdot \gamma}}{\sqrt{\epsilon_{n}}}
$$

\rightarrow typically requires: $d_{s e p} \approx 12 \sigma$ (LHC, HL-LHC, 4 IPs)
\rightarrow low β^{*} requires larger crossing angle α
\rightarrow lower energy γ a disadvantage

Possible parameters - (full) crossing angle

- Required crossing angle for 12σ separation:

$$
\begin{aligned}
& \beta^{*}=0.40 \mathrm{~m} \quad \longrightarrow \alpha \approx 500 \mu \mathrm{rad} \\
& \beta^{*}=0.15 \mathrm{~m} \quad \longrightarrow \alpha \approx 860 \mu \mathrm{rad}
\end{aligned}
$$

Reminder:

Crossing angle reduces the luminosity:

$$
L / L_{0}=F=1 / \sqrt{1+\left(\frac{\alpha \cdot \sigma_{z}}{2 \sigma^{*}}\right)^{2}}
$$

\rightarrow assume round beams (σ^{*} in crossing plane)
$\rightarrow \sigma_{z}$ r.m.s. bunch length
\rightarrow large angle, long bunches and small β^{*} reduce
luminosity (so does small ϵ)

Possible parameters

- Reduction factor due to crossing angle
$\beta^{*}=0.40 \mathrm{~m}: L / L_{0}=0.88$
$\beta^{*}=0.15 \mathrm{~m}: L / L_{0}=0.53!$
\rightarrow Requires crab crossing scheme (not yet demonstrated)

with/without crab crossing schemes

- Luminosity with and without reduction factor
- Below $\beta^{*} \approx 0.3 \mathrm{~m}$, practically no gain
\rightarrow Crab crossing required for $\mathcal{L} \geq 1.0 \cdot 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

Conservative low β optics in IR5

- Standard L^{*}, round beams
- Crossing in IP5, $\beta^{*}=0.40 \mathrm{~m}, \hat{\beta} \approx 6 \mathrm{~km}$

Low β optics in IR5

- Comparison: $\beta^{*}=0.15 \mathrm{~m}$ versus $\beta^{*}=0.40 \mathrm{~m}$
- Crossing in IP5, $\beta^{*}=0.15 \mathrm{~m}, \hat{\beta} \approx 20 \mathrm{~km}$

Crossing schemes - options

Vertical or horizontal ?

- Vertical:

Some residual dispersion
Rather flexible (sign and size)

- Horizontal:

No dispersion in vertical plane (is it important ?)
Less flexible (sign fixed)

- Still need crab crossing (not yet proven to work)
- Other options ?

Low β orbit in IP5

- Standard crossing angle, IP5, $\beta^{*}=0.15 \mathrm{~m}, d_{\text {sep }}=12 \sigma$
- Requires: $\alpha \approx \pm 430 \mu \mathrm{rad}$

Reduced L*

Effect of a smaller L^{*}

- Can be used to reduce $\hat{\beta}$
- Or modified crossing scheme:
\rightarrow Make an additional, local crossing angle
- Would require dipole magnets in drift space (like LHCb)
- With correct (bad) sign: "effective" crossing angle smaller
\rightarrow Reduced geometric loss factor

Low β orbit in IP5

- Closed (short) bump around IP5
- $L^{*}= \pm 24 \mathrm{~m}, L_{\text {exp }}^{*}= \pm 12 \mathrm{~m}$

Reminder: spectrometer bump in LHCb

- Compensator bump at injection energy

Low β orbit in IP5

- Standard crossing angle plus bump, IP5
\rightarrow decreased separation near IP, smaller "effective" angle

Separation in IP5

\rightarrow decreased separation near IP, smaller "effective" angle
\rightarrow geometric loss much reduced $(\pm 240 \mu \mathrm{rad}, \approx 40 \%$ more $)$

Beam-beam effects

- Assume HL-LHC parameters
- Beam-beam parameter: $\xi \approx 0.01$ (achieved with more than one IP)
- Single IP, i.e. no compensation with alternating crossing, expect stronger PACMAN effects
- Overall long range effects smaller
- With bump: 6 of 30 LR encounters with 7 - 10σ, all others at 12σ

Options (comparison with HL-LHC)

Possible luminosity performance:

E (TeV)	β^{*}	α ($\mu \mathrm{rad}$)	\mathbf{L}_{0}	L	$\mathbf{L} / \mathbf{L}_{0}$
7.0	0.15 m	2. 295	$2.4 \cdot 10^{35}$	$1.3 \cdot 10^{35}$	0.539
3.3	0.15 m	2. 430	1.14. 10^{35}	$0.61 \cdot 10^{35}$	0.539
3.3	0.15 m	2. (430-190)	$1.14 \cdot 10^{35}$	$0.86 \cdot 10^{35}$	0.755

- Assumptions:

Single low β insertion
2.2. 10^{35} per bunch, bunch spacing 25 ns
$\epsilon=2.5 \mu \mathrm{~m}$
Round beams ($\beta_{x}^{*}=\beta_{y}^{*}$)

To sum up

Options:

- For $\mathcal{L} \geq 1.010^{35}: \beta^{*} \approx 0.15 \mathrm{~m}+$ crab crossing
- For $\mathcal{L} \geq 0.510^{35}: \beta^{*} \approx \mathbf{0 . 4 0} \mathbf{m}$ (achieved ..)
- Without crab crossing $\mathcal{L} \geq 1.010^{35}$ is out of reach (see HL-LHC)
- For $\beta^{*}=\mathbf{0 . 1 5} \mathbf{~ m}+$ bump: $\mathcal{L} \approx 0.8-0.9 \cdot 10^{35}$
- Simplest option: larger intensity per bunch ($N_{b}=2.4 \cdot 10^{11}$)

