Elastyczny i całkowity przekrój czynny @ LHC

J. Królikowski
Instytut Fizyki Doświadczalnej UW

Elastyczny przekrój czynny pp

Ograniczenie Froissarta:

$$
\sigma_{t o t} \leq\left(\frac{\pi}{2 m_{\pi}}\right) \times \ln \left(\frac{s}{1 G e V}\right)
$$

~2.4 b @7 TeV

Próbkowanie zachodzi dla parametru zderzenia b rzędu:

$$
\mathbf{b} \sim \frac{1}{\sqrt{\mathbf{t}}}
$$

Dla małych t elastyczny różniczkowy przekrój czynny spada eksponencjalnie z t:

d σ $=A e^{-\mathbf{B}(s) t}$ dt

Rozpraszanie dla małych t zachodzi przede wszystkim w koronie zewnętrznej

Historia: ISR pp vs TeVatron ppbar

Dyfrakcja Fraunhofera: $\quad\left|t_{\min }\right| \cong p^{2} \theta^{2}$

ISR 1972

TeVATRON 2000

Całkowite przekroje czynne vs. $\sqrt{ }$ s pre-LHC

S. Donnachie et al, "Pomeron Physics and QCD", Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (No. 19), July 2005.

Nowe wyniki $\sigma_{\text {tot }} / \sigma_{\text {inel }}:$ ALICE, ATLAS, CMS, TOTEM

Przykładowo: S. Chartchyan el. al. Phys. Lett. B722, (2013) 5-27

CMS PAS QCD-11-002

Measurement of the inelastic $p p$ cross section at $\sqrt{s}=7 \mathrm{TeV}$

The CMS Collaboration

Figure 6: The results from the present CMS inelastic cross section analysis at $\sqrt{s}=7 \mathrm{TeV}$ (red square) compared with the results from ATLAS [12], CMS (via pile-up counting) [9], ALICE [21], TOTEM [20] and lower energy $p p$ and $p \bar{p}$ data from PDG [22].

PLAN

1. Przypomnienie podstaw dla zderzeń pp:d $\sigma_{\mathrm{el}} /$ $\mathrm{dt}, \mathrm{Re} / \mathrm{Im}$, twierdzenie optyczne, $\sigma_{\text {inel }}$
2. Normalizacja strumienia: metoda Van der Meera
3. TOTEM - dedykowany detektor do pomiaru d $\sigma_{\mathrm{e}} / \mathrm{dt}$ w LHC
4. Metody pomiaru i wyniki $\sigma_{\text {inel }} \mathbf{w}$ ATLAS i CMS przy $\sqrt{s}=7 \mathrm{TeV}$
5. Wyniki dla promieniowania kosmicznego przy $\left\langle V_{s}>=57 \mathrm{TeV}\right.$
6. Podsumowanie

1. Przypomnienie podstaw:

$\mathrm{d} \sigma_{\mathrm{el}} / \mathrm{dt}, \mathrm{Re} / \mathrm{Im}$, twierdzenie optyczne, $\sigma_{\text {inel }}$

Terminologia, topologia i metodologia miękkich procesów:

1. elastyczny pp——>pp: 20-25\% całkowitego PCz; trudny do pomiaru - wymaga specjalnej aparatury przy małych kątach,
2. Dyfrakcyjne pp--> pX (SD) lub XY (DD): $\mathbf{2 5 - 3 0 \%}$ całkowitego PCz; w modelu Regge spowodowany przez Pomeron; rozpoznawanie przede wszystkim przez duże przerwy pomiędzy grupami cząstek na rozkładach y (η),
3. Niedyfrakcyjne(ND) rozpraszanie pp-wszystko inne-50-60\% całkowitego PCz; najłatwiejszy do pomiaru - dużo cząstek, które mogą być (łatwo?)

$\sigma_{\text {inel }}(p p)$ i $\sigma_{\text {tot }}(p p)$

- Pomiar poprzez twierdzenie optyczne i elastyczny przekrój czynny jest najczystsze (TOTEM)
- Eksperymenty przy LHC (ALICE, ATLAS i CMS) mierzą bezpośrednio tylko czesść przypadków nieelastycznych. Ekstrapolacja do całości wymaga założeń fizycznych, modeli analitycznych i MC
- To samo dotyczy pomiaru przypadków dyfrakcyjnych (SD) przy LHC (także TOTEMu)

- To samo dotyczy eksperymentów promieni kosmicznych (AUGER, HiRes, EAS-TOP, AGASA, Fly's Eye...) choć inna jest systematyka tych pomiarów (patrz Cz.5).

Elastyczny różniczkowy przekrój czynny Struktura dyfrakcyjna z danych ISR

Nachylenie maksimum
dyfrakcyjnego B(s) dla t~0
ROŚNIE z energiąrozmiar protonu PUCHNIE!
$\sqrt{ } \mathrm{s}=23.5-62 \mathrm{GeV}$

Całkowity przekrój czynny Twierdzenie optyczne

$$
\begin{aligned}
& \sigma_{t o t}^{2}=\left.\frac{16 \pi(\hbar c)^{2}}{1+\rho^{2}} \frac{d \sigma_{e l}}{d t}\right|_{t=0} \\
& \rho=\operatorname{Re} A_{e l} /\left.\operatorname{Im} A_{e l}\right|_{t=0}
\end{aligned}
$$

Podstawy teoretyczne miękkich procesów (elastycznego, dyfrakcyjnych, całkowitego o)

trajektoria
 Pomeronu: $\alpha=\mid$

Trajektorie mezonowe:
 $$
\alpha=0-0.5
$$

To model Regge - wymiana mezonów i pomeronu (glueball?).
Obserwacja doświadczalna - trajektorie Regge - spiny cząstek w funcji mas układają się na liniach prostych parametryzowanych przez t.zw trajektorie Regge :

$$
\alpha(t)=\alpha+\alpha^{\prime} \cdot t
$$

Przekroje czynne:

$$
\sigma(s) \sim \operatorname{Im} A(s, t=0)=s^{\alpha-1}
$$

T Regge, Il Nuovo Cimento, 14 (1959) 951; G F Chew and S C Frautschi, Physical Review Letters 8 (1962) 41.

Parametryzacje miękkich przekrojów czynnych

Wkłady od Pomeronu (zależnie od stopnia skomplikowania modeli):

$$
\begin{aligned}
& \sigma(s) \propto \operatorname{Im} A(s, t=0) \sim s^{\alpha-1} \\
& \sigma(s) \propto \operatorname{Im} A(s, t=0) \sim \ln (s) \\
& \sigma(s) \propto \operatorname{Im} A(s, t=0) \sim \ln ^{2}(s)
\end{aligned}
$$

zaś parametryzacje przekrojów czynnych stosowane np. w pakietach obliczeniowych (COMPETE):

$$
\begin{gathered}
\sigma(s)=c_{1}+c_{2} * s^{-0.5}+c_{3} * s^{0.08} \\
\sigma(s)=c_{1}+c_{2} * s^{-0.5}+c_{3} * \ln ^{2}(s) \\
\sigma(s)=c_{1}+c_{2} * \ln (s)+c_{3} * \ln ^{2}(s)
\end{gathered}
$$

2. Normalizacja strumienia:

cluster counting i metoda Van der Meera,
jak to się robi w promieniowaniu kosmicznym - patrz Cz. 5
Na przykładzie CMS.
Wzór podstawowy:

$$
\mathrm{L}(\mathrm{t})=\frac{\mathrm{R}}{\sigma_{\text {vis }} \mathrm{A}\left(\mathrm{t}, \mathrm{n}_{\mathrm{b}}, \ldots\right)}
$$

gdzie: R- liczba przypadków pewnego typu na jedn. czasu, $\sigma_{\text {vis }}$ przekrój czynny na ten typ przypadków, $\mathrm{A}\left(\mathrm{t}, \mathrm{n}_{\mathrm{b}}, \ldots\right)$ - akceptacja jako funkcja czasu, liczby przypadków tła (pile-up) etc.
CMS: dwa detektory do pomiaru świetlności: HF - kalorymetr do przodu - przede wszystkim wykorzystywany do testów systematyki, i Pixel Detector - podstawowy detektor w metodzie cluster counting.
Metoda Cluster counting wykorzystuje dane z przemiatania wiązek metodą Van der Meera.

Zbieranie danych dla przemiatania Van der Meera

Wzór podstawowy:

$$
\frac{\mathbf{d N}}{\mathbf{d t}}=\frac{\mathbf{n}_{\text {bunch }} \mathbf{f} \mathbf{I}_{\mathbf{1}} \mathbf{I}_{\mathbf{2}}}{\mathbf{2 \pi \Sigma _ { \mathrm { X } } \Sigma _ { \mathrm { Y } }} \sigma_{\text {vis }}}
$$

Kilka okresów zbierania danych w 2012 i 2013. Każdy kolejny dostarczał lepszych danych.
Metoda polega na zmierzeniu profilu poprzecznego wiązek poprzez zmienianie (przemiatanie) położenia pionowego jednej wiązki względem drugiej

From length scale calibration

CMS - przemiatanie poziome

Średnia pozycja pionowa <y>i szerokość pionowa σ_{Y} dla dwóch sesji VdM w 2012 (kwiecień i listopad).

CMS 2012

Sekwencja przemiatań VdM w listopadzie 2012 CMS VdM scan sequence in fill 3316

Przykładowy profil intensywności wiązki dla konkretnego przecięcia wiązek (bx 721 fill 3316)

Definicja $\sigma_{\text {vis }}$ w CMS poprzez pomiar pile-up dla różnego przekrywania się wiązek

$\mathrm{n}_{\mathrm{vis}}(\Delta \mathrm{X}, \Delta \mathrm{Y})$ - średnia liczba klastrów (wierzchołków) w detektorze mozaikowym CMS przypadająca na 1 przypadek nieelastyczpy dla przypadków 0-bias (- żądanie tylko zderzenia w CMS IP). Jeżeli średnia liczba nieelastycznych zderzeń w jednym przeciéciu $\mu(\Delta X, \Delta Y)$, zaś średnia częstość zderzania paczek w LHC $f=1124 \mathbf{F}^{\mathrm{Hz}}$, to świetlność L dana jest wzorami:

$$
\begin{aligned}
& \mathbf{f} \mu=\mathbf{L} \sigma_{\text {inel }} \\
& \langle\mathbf{n}\rangle=\mu \mathbf{n}_{\mathrm{vis}} ; \quad \sigma_{\mathrm{vis}}=\sigma_{\mathrm{inel}} \mathbf{n}_{\mathrm{vis}} \\
& \mathbf{L}(\Delta \mathbf{X}, \Delta \mathbf{Y})=\frac{\mathbf{f}\langle\mathbf{n}\rangle}{\tau}
\end{aligned}
$$

σ
Precyzja L ~ 3-4 \%

3. TOTEM - dedykowany detektor do pomiaru d $\sigma_{\mathrm{e} l} / \mathrm{dt}$

TOTEM 2013

Całkowity przekrój czynny Twierdzenie optyczne

$$
\sigma_{t o t}^{2}=\left.\frac{16 \pi(\hbar c)^{2}}{1+\rho^{2}} \frac{d \sigma_{e l}}{d t}\right|_{t=0}
$$

$$
\rho=\operatorname{Re} A_{e l} /\left.\operatorname{Im} A_{e l}\right|_{t=0}
$$

> TOTEM
> $\rho^{2}=0.009 \pm 0.056$ obl. COMPETE $\rho^{2}=\sim 0.02$
$\mathrm{B}=19.9 \pm 0.3 \mathrm{GeV}^{-2}$

Total Cross-Section

TOTEM układ doświadczalny

Roman Pots: measure elastic \& diffractive protons close to outgoing beam

Roman pots (G. Mattiae, 1972)

2010 Data First p-p Elastic Scattering Events

Rekonstrukcja

Proton Reconstruction @ LHC

($\mathrm{x}^{*}, \mathrm{y}^{*}$): vertex position
$\left(\theta_{\mathrm{x}}{ }^{*}, \theta_{\mathrm{y}}{ }^{*}\right)$: emission angle: $\mathrm{t} \approx-\mathrm{p}^{2}\left(\theta_{\mathrm{x}}{ }^{* 2}+\theta_{\mathrm{y}}{ }^{* 2}\right)$
$\xi=\Delta \mathrm{p} / \mathrm{p}$: momentum loss (elastic case: $\xi=0$)
Measured in RP $\left(\begin{array}{c}x \\ \Theta_{x} \\ y \\ \Theta_{y} \\ \Delta p / p\end{array}\right)_{\mathbf{R P}}^{\left(\begin{array}{ccccc}v_{x} & L_{x} & 0 & 0 & D_{x} \\ v_{x}^{\prime} & L_{x}^{\prime} & 0 & 0 & D_{x}^{\prime} \\ 0 & 0 & v_{y} & L_{y} & 0 \\ 0 & 0 & v_{y}^{\prime} & L_{y}^{\prime} & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)} \underbrace{x^{*}} \begin{array}{c}\Theta_{x}^{*} \\ y^{*} \\ \Theta_{y}^{*} \\ \Delta p / p\end{array})_{\mathbf{I P 5}}$ Values at IP5 to be reconstructed
Product of all lattice element matrices

$$
\begin{array}{|lll}
\hline X_{R P}=L_{x} \Theta_{x}^{*}+V_{x} X^{*}+D_{x} \xi & \begin{array}{l}
\mathrm{L}_{\mathrm{x}}, \mathrm{~L}_{\mathrm{y}}:
\end{array} \begin{array}{l}
\text { effective lengths (sensitivity to scattering angle) } \\
\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}: \\
y_{R P}=L_{y} \Theta_{y}^{*}+V_{y} y^{*}
\end{array} & \mathrm{D}_{\mathrm{x}}:
\end{array} \begin{aligned}
& \text { dispersifications (sensitivity to momentum loss); } \mathrm{D}_{\mathrm{y}} \sim 0
\end{aligned}
$$

Reconstruction of proton kinematics $=$ "inversion" of transport equation
Transport matrix elements depend on $\xi \rightarrow$ non-linear problem (except in elastic case!)
Excellent optics understanding needed: CERN-PH-EP-2014-066

Measurement of low-t Elastic Scattering

Data with $\beta^{*} 90 \mathrm{~m}$ optics
Extrapolation to $\mathrm{t}=0$ and integration of elastic cross section: $25.4 \pm 1.1 \mathrm{mb} \quad(>90 \%$ of cross-section visible, $<10 \%$ extrapolated)

TOTEM Inelastic Cross-Section

T1 and T2 direct measurement

Inelastic events in T2: classification

tracks in both hemispheres
non-diffractive minimum bias

double diffraction
tracks in a single hemisphere
mainly single diffraction

$M_{X}>3.4 \mathrm{GeV} / \mathrm{c}^{2}$
Corrections to the T1, T2 visible events (eff., μ)

$\sigma_{\text {inel, }|\eta|<6.5}=70.5 \pm 2.9 \mathrm{mb}$
\rightarrow Corrections for acceptance, gaps, DPE (MC/data)
$\boldsymbol{\sigma}_{\text {inel }}=73.7 \pm 0.1^{\text {stat }} \pm 1.7^{\text {syst }} \pm 2.9^{\text {lumi }} \mathrm{mb}$
Inclusive measurement based on Optical Theorem
$\Rightarrow \sigma_{\text {inel }}=\sigma_{\text {tot }}-\sigma_{\text {el }}=73.1 \pm 1.3 \mathrm{mb}$

$$
\sigma_{\text {inel, }|n|<6.5}=70.5 \pm 2.9 \mathrm{mb}
$$

$$
\begin{aligned}
\sigma_{\text {inel },|n|>6.5} & =2.6 \pm 2.2 \mathrm{mb} \\
& <6.3 \mathrm{mb}(95 \% \mathrm{CL})
\end{aligned}
$$

Była to metoda wyznaczania do/dt w ISR 1972 gdy nie było pomiaru świetIności

TOTEM+ CMS

Central Exclusive Production (CEP)

also $\gamma \gamma$ fusion \& photoproduction

- exchange of colour singlets with vacuum quantum numbers
\Rightarrow selection rules for system $X: J^{\mathrm{PC}}=0^{++}, 2^{++}, \ldots$ resonances, jets,?....
- With double-arm proton detection:

$$
\begin{aligned}
& \beta^{\star}=90 \mathrm{~m} \text { runs: all } \mathrm{M}(\mathrm{pp}), \quad \mu \sim 0.05-0.5 \Rightarrow \mathrm{O}\left(0.1-10 \mathrm{pb}^{-1} / \text { day }\right) \\
& \text { low } \beta^{\star} \text { runs: } \mathrm{M}(\mathrm{pp})>\sim 350 \mathrm{GeV}, \mu \sim 30-50 \Rightarrow \mathrm{O}\left(1 \mathrm{fb}^{-1} / \text { day }\right)
\end{aligned}
$$

, Comparison/prediction from forward to central system:
, $M(p p)=$? M (central), $p_{T, 2}(p p)=$? $p_{T, 2}($ central), vertex $(p p)=$? vertex(central)
. Prediction of central particle flow topology from proton ξ 's (rapidity gaps): $\Delta \eta_{1,2}=-\ln \xi_{1,2}$

- CMS \& TOTEM common runs: access to $\mathrm{O}(\mathrm{pb})$ production cross-sections

CEP Iow-Mass States \& Glueballs

1 resonance / meson pair $(\pi \pi, K K, \rho \rho, \eta \eta)$

LHC: a unique lab to study CEP low M states

- small p_{T} 's of final state mesons \Rightarrow CMS tracking $\Delta \mathrm{M} \sim 10 \mathrm{MeV}$ (<< ISR, RHIC, Tevatron)
$-\pi / K / p$ separation using CMS tracker $\mathrm{dE} / \mathrm{dx}$
- proton tagging in $\beta^{*}=90 \mathrm{~m}$ runs $\Rightarrow \mathrm{p}_{\mathrm{T}} \sim 40 \mathrm{MeV}$
- RP proton tagging \Rightarrow no need to invoke rapidity gaps
- large η coverage \& protons \Rightarrow exclusivity ensured with excellent S/B
- spin determination from decay angles \& proton azimuthal correlations

Small $\boldsymbol{\xi} \sim \mathbf{1 0}^{-\mathbf{3}} \mathbf{1 0}^{-4}$ at LHC from RP vertices \Rightarrow pure gluon pair \Rightarrow masses $\sim 1-3 \mathrm{GeV}$ Pomeron \approx colourless gluon pair/ladder \Rightarrow Pomeron fusion likely to produce glueballs

- Past luminosity: $\sim 0.003 \mathrm{pb}^{-1} \Rightarrow$ need $\times 300\left(\sim 1 \mathrm{pb}^{-1}\right)$ to produce resonances
- Study of glueballs \& χ_{c} in hadronic modes require $\times 3000\left(\sim 10 \mathrm{pb}^{-1}\right)$
- Increase in integrated luminosity in high β runs may be obtained :
$>$ Increasing bunch number (requires crossing angle for high β runs)
$>$ Increasing running time

4. Metody pomiaru i wyniki $\sigma_{\text {inel }} \mathbf{W}$ ALICE, ATLAS i CMS przy $\sqrt{S}=7 \mathrm{TeV}$

Dwie metody:

- SD
- Zliczanie klastrów

Pojedyńcza dyfrakcja - zliczanie przypadków

z symulacji $\left(\mathrm{E}_{\min }=5 \mathrm{GeV}\right)$

Odmienne detektory Różne kryteria selekcji

Exp	Measurement Resuıt	Dtat	かyst	Lum	
ALICE	$\sigma_{\text {Inel }}^{\left(\xi>5 \times 10^{-6}\right)}$	62.1		${ }_{-0.9}^{+1.0}$	$\pm 2.2 \mathrm{mb}$

TOTEM	$\sigma_{\text {Inel }}^{\left(\xi>2 \times 10^{-7}\right)}$	70.5	± 0.1	$\pm 0.8 \pm 2.8 \mathrm{mb}$
ALICE	$\sigma_{\text {Inel }}$	73.2		$-4.6 \pm 2.6 \mathrm{mb}$
ATLAS	$\sigma_{\text {Inel }}^{+2.0}$	69.4		$\pm 6.9 \pm 2.4 \mathrm{mb}$
TOTEM	$\sigma_{\text {Inel }}$	73.7	± 0.1	$\pm 1.7 \pm 2.9 \mathrm{mb}$
CMS	$\sigma_{\text {Inel }}^{(>1 \text { track })}$	58.7		$\pm 2.0 \pm 2.4 \mathrm{mb}$
CMS	$\sigma_{\text {Inel }}^{(>2}$ tracks $)$	57.2	$\pm 2.0 \pm 2.4 \mathrm{mb}$	
CMS	$\sigma_{\text {Inel }}^{(>3 \text { tracks })}$	55.4	$\pm 2.0 \pm 2.4 \mathrm{mb}$	

Pomiar wprost części $\sigma_{i n e l}$ w obszarze centralnym (ALICE, ATLAS, CMS)

Metoda zaproponowana po raz pierwszy przez przez CMS.
Liczba n przypadków nieelastycznych n w każdym zderzeniu paczek jest opisywana rozkładem Poissona:

$$
\mathbf{P}(\mathbf{n}, \lambda)=\frac{\lambda^{n} \mathbf{e}^{-\lambda}}{\mathbf{n !}}
$$

Średnia liczba zderzeń λ jest dana wzorem $\lambda=\mathrm{L} * \sigma_{\text {inel }}$. Świetlność L musi być niezależnie zmierzona.
Zliczanie wierzchołków w zderzeniach paczek dla różnych wartości L podczas napełnienia LHC i dopasowanie do rozkładu p. Ryby pozwala wyznaczyć $\sigma_{\text {inel }}$.
Wyzwalanie w sposób nieobciążony - paczki z mionem o dużym p_{t}, przypadek w mionem nie liczy się do n.

CMS

Prawdopodobieństwo znalezienia $\mathbf{n}(=0,1,2,3-8)$ przypadków z co najmniej dwoma torami o $\mathrm{p}_{\mathrm{t}}>200 \mathrm{MeV} / \mathrm{c}--\rightarrow$ dopasowanie λ

Kompilacja wyników z LHC i porównanie z modelami MC

Niepewności modeli MC ~I mb

5. Wyniki dla promieniowania kosmicznego
$\sigma_{\text {inel }}($ proton- powietrze) przy $\langle\sqrt{ } \gg=57 \mathrm{TeV}$

Na co są czułe eksperymenty z promieniowaniem kosmicznym?

AUGER

Maksimum kaskady w powietrzu

P. Abreu et al. [Pierre Auger Collaboration], "Measurement of the proton-air cross-section at $\sqrt{s}=57 \mathrm{TeV}$ "
Phys. Rev. Lett. 109, 062002 (2012)

Jak mierzyć x $_{1}$ I X max $^{\text {max }}$

- Pomiar $\mathrm{N}_{\mathrm{e}} / \mathrm{N}_{\mu}$ - czuly na $\mathrm{X}_{\text {max }}$; wymaga obliczeń MC; jeżeli mierzy się ponadto kierunek osi kaskady można wyznaczać \mathbf{X}_{1}
- Pomiar „ogona" rozkładu X ${ }_{\text {max }}$ dla ustalonej energii cząstki pierwotnej (np. AUGER)

$$
\sigma_{\text {Inel }}^{57 T e V}(p-a i r)=505 \pm 22(\text { stat })_{-36}^{+28}(\text { syst }) m b .
$$

- Zależność $\sigma_{\text {inel }}\left(\right.$ proton- powietrze) od $x_{\text {ma }}$ z symulacji MC.
P. Abreu et al. [Pierre Auger Collaboration], "Measurement of the proton-air cross-section at $\sqrt{s}=57 \mathrm{TeV}$ " Phys. Rev. Lett. 109, 062002 (2012)

Od proton- powietrze do nieelastycznego PCz proton-proton

Metoda opiera się na rachunkach w modelu Glaubera

$$
\begin{array}{ll}
\text { AUGER: } & \sigma_{\text {Inel }}^{57 T e V}(p p)=92 \pm 7(\text { stat }) \pm 9(\text { syst }) \pm 7 \text { (Gl.) mb } \\
& \sigma_{\text {Tot }}^{57 T e V}(p p)=133 \pm 13(\text { stat }) \pm 17(\text { syst }) \pm 16 \quad \text { (Gl.) mb. }
\end{array}
$$

6. Podsumowanie

Parametryzacja Bloch- Halzen

M. M. Block and F. Halzen, "Forward hadronic scattering at 8 TeV : predictions for the LHC," Phys. Rev. D $\mathbf{8 6}$ (2012) 014006

$$
\begin{aligned}
\sigma_{\text {Tot }} & =37.1 s^{-0.5}+37.2-1.4 \ln (s)+0.3 \ln ^{2}(s) \\
\sigma_{\text {Inel }} & =62.6 s^{-0.5}-0.5-1.6 \ln (s)+0.14 \ln ^{2}(s)
\end{aligned}
$$

Wybrana literatura (poza cytowanymi już pracami)

TOTEM Publications

- Proton-proton elastic scattering at the LHC energy of $\mathrm{Vs}=7 \mathrm{TeV}$, EPL 95 (2011) 41001
- First measurement of the total proton-proton cross section at the LHC energy of $\mathrm{Vs}=7 \mathrm{TeV}$ EPL 96 (2011) 21002
- Measurement of the forward charged particle pseudorapidity density in pp collisions at $\mathrm{V}=7$ TeV with the TOTEM experiment, EPL 98 (2012) 31002
- Measurement of proton-proton elastic scattering_and total cross-section at $\mathrm{Vs}=7 \mathrm{TeV}$, EPL 101 (2013) 21002
- Measurement of proton-proton inelastic scattering_cross-section at Vs = 7 TeV, EPL 101 (2013) 21003
- Luminosity-independent measurements of total, elastic and inelastic cross-sections at $\mathrm{Vs}=7$ TeV, EPL 101 (2013) 21004
- A luminosity-independent measurement of the proton-proton total cross-section at $\mathrm{Vs}=8$ TeV, Phys. Rev. Lett. 111, 012001 (2013)
- Double diffractive cross-section measurement in the forward region at LHC, Phys. Rev. Lett. 111 (2013) 262001.
- Measurement of pseudorapidity distributions of charged particles in proton-proton collisions at $\mathrm{Vs}=8 \mathrm{TeV}$ by the CMS and TOTEM experiments CERN-PH-EP-2014-063, submitted to EPJ
- The TOTEM Experiment at the CERN Large Hadron Collider JINST 3 (2008) S08007
- Performance of the Totem Detectors at the LHC, Int. J. Mod. Phys. A
- LHC optics determination with proton tracks measured in the Roman Pots detectors of the TOTEM experiment CERN-PH-EP-TOTEM-2014-002, submitted to New J. Phys

ATLAS

- Sigma total from elastic cross-section, Nucl. Phys. B898 (2014) 465, patrz także L. Tompkins arXiv1402.2011;
- M. Trzebiński, Towards a Total Cross Section Measurement with the ALFA Detector at ATLAS, Proc. 19th Cracow Epiphany Conference on The Physics after the first phase of the LHC, 2013, Acta Phys.Polon. B44 (2013) pp.1363-1705
- G. Aad et. al Measurement of the Inelastic Proton-Proton CrossSection at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS Detector, Nature Commun. 2 (2011) 463

ALICE

- Measurement of inelastic, single- and double-diffraction cross sections in proton--proton collisions at the LHC with ALICE, By ALICE Collaboration (Betty Abelev et al.), arXiv:1208.4968 [hep-ex], Eur.Phys.J. C73 (2013) 2456.

CMS

- CMS Collaboration (Serguei Chatrchyan et al.), Measurement of the inelastic proton-proton cross section at \$ $\$ \mathrm{sqrt}\{\mathrm{s}\}=7 \$ \mathrm{TeV}$, arXiv: 1210.6718 [hep-ex], Phys.Lett. B722 (2013) 5-27,
- ditto, CMS PAS-QCD-11-002.

Teoria i przeglądy

- N. Cartaglia, Measurements of pp total, elastic, inelastic and diffractive cross sections, arXive 1305.6131,
- J. R. Cudell et. al. (COMPETE), Brnchmarks for the Forward Observations at RHIC, Tevatron Run II and LHC", arXiv hep-ph 0206/172,
- J. R. Cudell et. al. $\sigma_{\text {tot }}$ at thre LHC: Models and Experimental Consequences, arXiv 0911. 3508
- M.M. Block, Ultra-high Energy Predictions of Proton-Air Cross Sections from Accelerator Data: an Update arXiv:1109.2940 [hep-ph], Phys.Rev. D84 (2011) 091501.
- Martin M. Block, Francis Halzen., 'Soft' Hadronic Cross Sections Challenge Hidden Dimensions, arXiv:1201.0960 [hep-ph].

