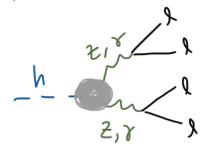
Possibilites in $h \rightarrow 4\ell$ at 100 TeV


Roberto Vega-Morales

Laboratoire de Physique Théorique d'Orsay (Work Supported by ERC Advanced Grant Higgs@LHC)

FCC Higgs EWSB Working Group Discussion CERN: February 25, 2015

(In collaboration with: Adam Falkowski, Roni Harnik, Ian Low, Joe Lykken, Daniel Stolarski and CMS experimentalists Yi Chen, Emanuele DiMarco, Maria Spiropulu, Si Xie) Anomalous Higgs Couplings in the Golden Channel

► Refers to $h \rightarrow VV' \rightarrow 4\ell$ decay where $4\ell = 2e2\mu$, 4e, 4μ and VV' = ZZ, $Z\gamma$, $\gamma\gamma$ (where Z, γ are in general off-shell)

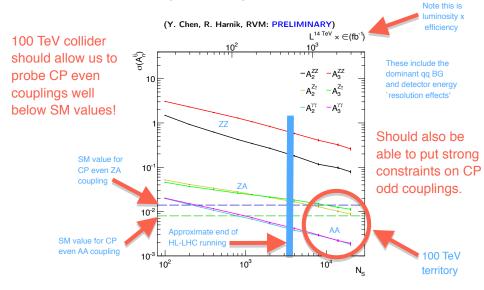
Can parametrize the hVV' couplings with following Lagrangian

$$\mathcal{L} \supset \frac{h}{4v} \Big(2A_1^{ZZ} m_Z^2 Z^{\mu} Z_{\mu} + A_2^{ZZ} Z^{\mu\nu} Z_{\mu\nu} + A_3^{ZZ} Z^{\mu\nu} \widetilde{Z}_{\mu\nu} \\ + 2A_2^{Z\gamma} F^{\mu\nu} Z_{\mu\nu} + 2A_3^{Z\gamma} F^{\mu\nu} \widetilde{Z}_{\mu\nu} + A_2^{\gamma\gamma} F^{\mu\nu} F_{\mu\nu} + A_3^{\gamma\gamma} F^{\mu\nu} \widetilde{F}_{\mu\nu} \Big)$$

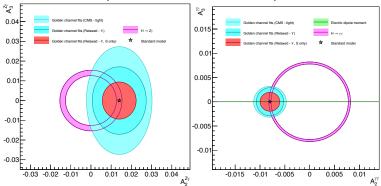
(For SM at tree level we have $A_1^{ZZ} = 2$ and all others zero) In SM, $h \rightarrow 4\ell$ rate dominated by tree level A_1^{ZZ} operator

¹⁰¹:ting 'Sensitivity Curves' with MEM

7.3e-05


1.4e-05 10-2: ourse in the end we use all (decay) observables available us examine 'sensitivity curves' for the hVV' loop induced 10^{-3} olings as a function of number of events (or luminosity) 3.3e-05 $_{10^{-4}}$ perform a 6D parameter fit to the 6 loop induced couplings: 4.5<u>e-06</u> $\vec{A} = (A_2^{ZZ}, A_3^{ZZ}, A_2^{Z\gamma}, A_3^{Z\gamma}, A_2^{\gamma\gamma}, A_3^{\gamma\gamma})$ 10⁻⁵ 2.3e-06 SM A_2^i generated at 1-loop and $\mathcal{O}(10^{-2} - 10^{-3})$ while A_3^i only appear at 3-loop) 10^{-6} couplings floated independently and all correlations included 10^{-7} plot the 'average error' as function of number of events: АЗАА $\sigma(A) = \sqrt{\frac{\pi}{2}} \langle |\hat{A} - \vec{A_o}| \rangle$

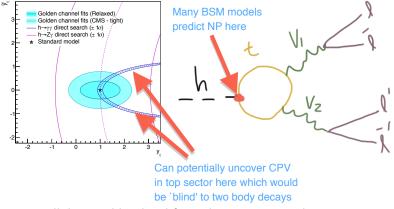
(\hat{A} is best fit point, \vec{A}_o is 'true' value, and average taken over large set of PE) • We fit to a 'true' point of $\vec{A}_o = (0, 0, 0, 0, 0, 0)$ (tree level SM)


▶ Apply optimized $h \rightarrow 4\ell$ cuts: $p_{T\ell} > 20, 10, 5, 5$ GeV for lepton p_T , $|\eta_\ell| < 2.4$, and 4 GeV $\leq M_{1,2}$, $M_1 > M_2$ (Y. Chen, R. Harnik, RVM: to appear)

Sensitivity Projections With Optimized Cuts

W can now attempt to give an estimate of sensitivity Fit to 'true' point of $\vec{A} = (0, 0, 0, 0, 0, 0)$ and assume SM production and BR

Directly Probing $Z\gamma$ and $\gamma\gamma$ CP Properties at 100 TeV Can we overall sign of $hZ\gamma$ and $h\gamma\gamma$ with 20,000 events? Fit to 'true' point of $\vec{A} = (0, 0, 0.014, 0, -0.008, 0)$ (SM values for $A_2^{Z\gamma}, A_2^{\gamma\gamma}$)


(Y. Chen, R. Harnik, RVM: PRELIMINARY)

See $h \rightarrow 4\ell$ useful for probing 'blind' directions in $h \rightarrow V\gamma$ two body decays Improvement in sensitivity with optimized cuts (see: Y. Chen, R. Harnik, RVM: to appear) With 20k events could establish overall sign of $hZ\gamma$ and $h\gamma\gamma$ in $h \rightarrow 4\ell$ alone

Probing the Top Yukawa in $h \rightarrow 4\ell$ at 100 TeV

- Can $h \rightarrow 4\ell$ also probe underlying loop processes with <u>20k events</u>?
- Investigating if we can probe htt and other BSM possibilities

(Y. Chen, D. Stolarski, RVM: work in progress)

- \blacktriangleright 100 TeV collider would aid in lifting degeneracies in $h \to Z\gamma, \gamma\gamma$
- Could discover CPV in top sector in LHC 'blind' regions

Summary

- ▶ $h \rightarrow 4\ell$ an indispensable tool to study Higgs and search for BSM
- ▶ Can use $h \rightarrow 4\ell$ to study Higgs couplings to ZZ, Z γ , and $\gamma\gamma$
- It is a direct and unique probe of CP properties of these couplings
- Serves as complementary, but qualitatively different measurement to $h \rightarrow Z\gamma$ and $h \rightarrow \gamma\gamma$ on-shell (two body) decays
- Can also use golden channel to search for exotic Higgs decays and underlying loop effects which generate effective Higgs couplings
- Limited mainly by statistics making 100 TeV collider the ideal tool to maximize the information in the $gg \to h \to 4\ell$ process
- \blacktriangleright Similar statements apply (to a lesser extent) to $h
 ightarrow 2\ell\gamma$ channel

THANKS!

For more information see:

Y. Chen, N. Tran, RVM: arXiv:1211.1959,
Y. Chen, RVM: arXiv:1310.2893,
Y. Chen, E. DiMarco, J. Lykken, M. Spiropulu, RVM, S. Xie: arXiv:1401.2077,
A. Falkowski, RVM: arXiv:1404.1095,
Y. Chen, R. Harnick, RVM: arXiv:1404.1336,
Y. Chen, F. DiMarco, J. Lykken, M. Spiropulu, RVM, S. Xie: arXiv:1410.4817,
CMS Collaboration: CMS PAS HIG-14-014,
CMS Collaboration: arXiv:1411.3441
Yi Chen PhD thesis: CERN-THESIS-2014-201

Also in near future see:

- Y. Chen, R. Harnick, RVM: to appear,
- Y. Chen, D. Stolarski, RVM: to appear