Exotic Higgs Decays at Future Colliders

FCC Higgs/EWSB WG meeting @ CERN

25 February 2015

David Curtin University of Maryland

Exotic Higgs Decays

- The couplings of the SM-like higgs will be determined by coupling fits with ~10% precision by the end of the LHC program. Br(h→invisible) can be constrained to only ~ 10% with 3000/fb
- Imagine an exotic higgs decay with 10% Br.

Run I data could contain O(50,000) exotic higgs decays per experiment.Run 2:O(I million)HL-LHC:O(10 million)

If we do not look, we will not find!

- Important theoretical motivations to consider exotic higgs decays:
 - The higgs width is extremely narrow (~ 4 MeV). Tiny couplings ~ 0.01 can give Br ~ 10%.
 - 2. New physics can easily couple to SM via Higgs Portal $\Delta \mathcal{L} = \frac{\mu}{\Lambda^2} |H|^2 \bar{\psi} \psi \quad \Delta \mathcal{L} = \frac{\zeta}{2} s^2 |H|^2$
 - 3. Vast theory literature on models with light BSM sectors coupling to the Higgs. For survey, see DC, Essig, Gori, Jaiswal, Katz, Liu, Liu, McKeen, Shelton, Strassler, Surujon, Tweedie, Zhong, arXiv:1312.4992

1310.8361 Dawson et al

Naive Reach Estimates

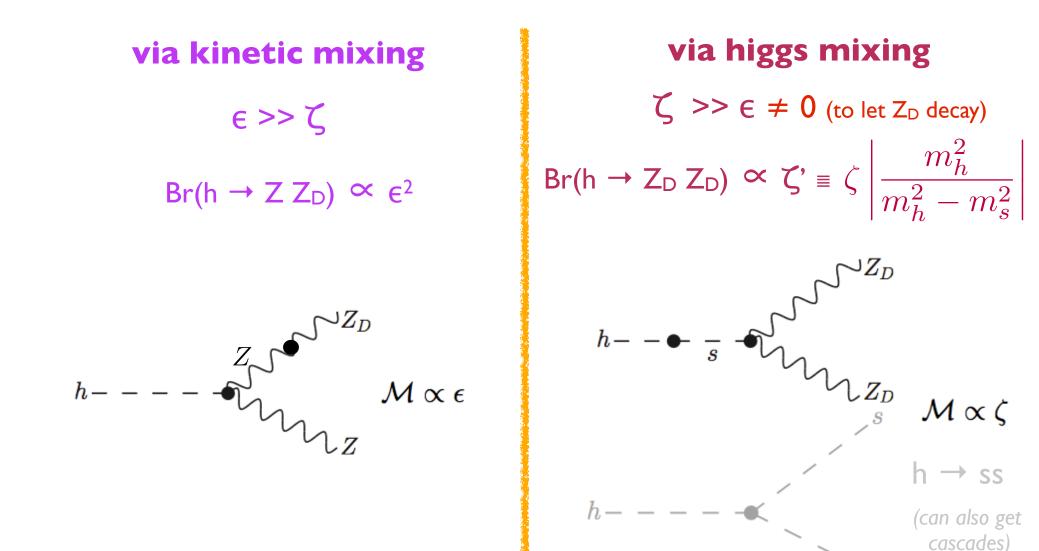
					e.g. $h \rightarrow Z_D Z_D \rightarrow 4I$	e.g. h → 2a → 4b or even h → jets
	E (Tev)	lumi (/fb)	N _{higgs} (all)	N _{higgs} (clean)	Br sensitivity for very conspicuous decays	Br sensitivity for very difficult decays
LHC run I	7,8	25	500k	0	I 0 ⁻⁴	O(I) or worse
LHC run 2	14	300	10 million	0	I 0 ⁻⁵	O(0.1) - O(1)
HL-LHC	14	3000	100 million	0	I 0 ⁻⁶	?
ILC	0.25 - 1	7000	I million	40k	10 ⁻⁴ - 10 ⁻⁵	I 0 ⁻²
TLEP	0.25ish	10000	3 million	300k	10 ⁻⁵	I 0 ⁻³
100 TeV	100	3000	few billion	0	10 ⁻⁷ - 10 ⁻⁸	10-2 ????

100 TeV collider is an intensity frontier experiment to study the Higgs!

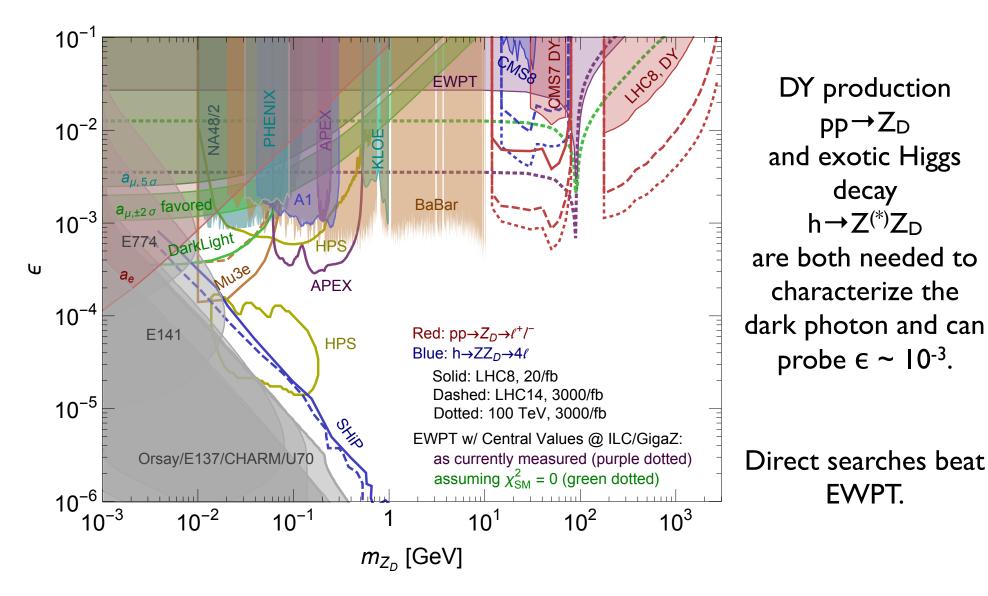
Good example: Dark Photons

Simplified Model Lagrangian

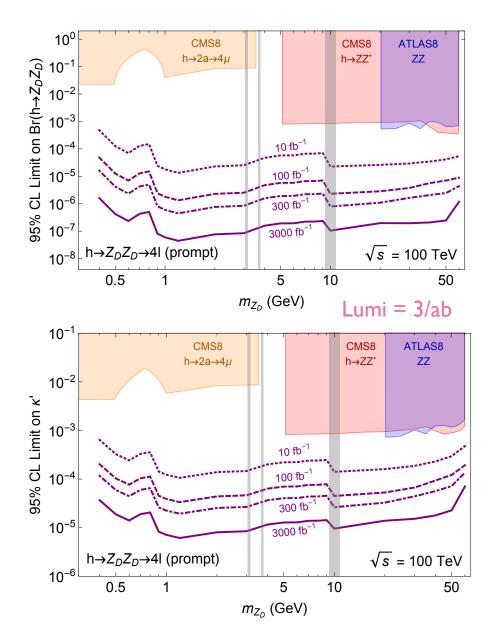
- Many motivations for considering this: arises as part of UV complete models, hidden valleys, can help with anomalies, etc...
- Add a new higgsed U(I)_D gauge group. Get SM singlet scalar (mix with Higgs) and dark photon (mix with hypercharge)


$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4}\hat{B}_{\mu\nu}\hat{B}^{\mu\nu} - \frac{1}{4}\hat{Z}_{D\mu\nu}Z_D^{\mu\nu} + \frac{1}{2}\frac{\epsilon}{\cos\theta_W}\hat{B}_{\mu\nu}\hat{Z}_D^{\mu\nu} \qquad \text{Portal}$$

$$V_0 = -\mu^2|H|^2 + \lambda|H|^4 - \mu_D^2|S|^2 + \lambda_D|S|^4 + \zeta|S|^2|H|^2 \qquad \text{Higgs Portal}$$

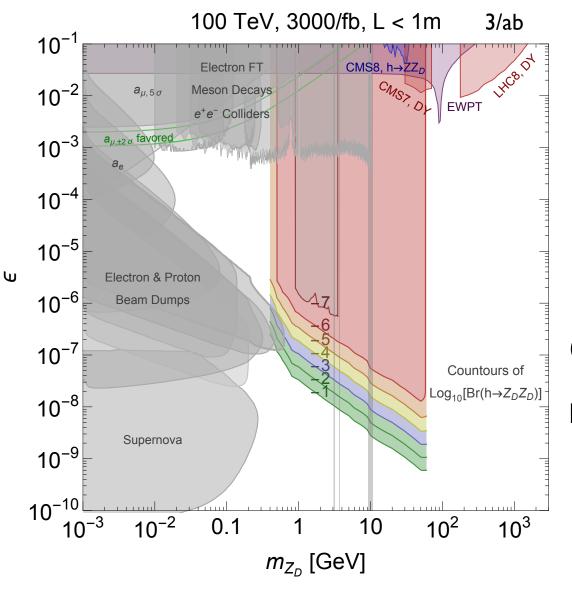

 Recently studied prospects of probing these two portals at future colliders. DC, Rouven Essig, Stefania Gori, Jessie Shelton, 1412.0018

Higgs → Dark Vector


Two kinds of exotic higgs decays to dark photons

Probing Kinetic Mixing

Probing Higgs Mixing



The only^{*} way to probe higgs mixing is via the exotic Higgs decay $h \rightarrow Z_D Z_D$.

At 100 TeV, get expected ~ 10^{-8} Br sensitivity for a conspicuous decay.

Probe couplings smaller than 10⁻⁵.

Probing Kinetic Mixing via Higgs Mixing

If there is Higgs mixing, have exotic Higgs decay $h \rightarrow Z_D Z_D$.

However, kinetic mixing \in has to be nonzero to allow decay of Z_D .

If we detect $h \rightarrow Z_D Z_D$ via prompt decay, then we have detected $\epsilon > 10^{-6}$ (much better than direct probe of ϵ)

Enormous signal rates at pp colliders allow detection of extremely longlived particles.

Can probe $\epsilon \sim 10^{-10}$ if Higgs mixing is sizable!

Conclusions

- Exotic Higgs decays are well-motivated theoretically and experimentally and may be the only window into new physics.
- A 100 TeV collider is uniquely well suited to look for rare Higgs decays due to the enormous number of produced Higgs particles.
- The large rates can probe extremely small couplings, and/or extremely long life-times of produced particles.
- Underlines importance of triggering on and reconstructing low-pT objects at 100 TeV.
- For exotic Higgs decays with difficult final states (hadronic, MET, ...), future lepton colliders provide best discovery avenue.