
28/11/2014

ROOT in the HEP Software
Foundation
Pere Mato/CERN on behalf of ROOT Team
HSF Workshop, SLAC, 28th November 2014

Why ROOT is interested in HSF?
✤ ROOT is one of the essential software packages in basically 100% of HEP

experiments software stacks
✤ I/O, histogramming, statistics, graphics, interactivity, scripting, data

analysis, etc.
✤ If we build the HEP Software Foundation, ROOT must to be part of it
✤ We need to better integrate all HEP software components, and ROOT is an

essential ingredient
✤ ROOT has played the role of ‘hosting’ contributions that are useful to the

HEP community
✤ Providing build & testing infrastructure, integration, distribution,

licensing, support infrastructure, etc.  
==> makes the life easier to users

✤ HSF should just generalize what ROOT has been doing so far

2

Opportunity for Contributors
✤ We would like to facilitate contributions to ROOT without engaging our

responsibility in the maintenance and user support
✤ layered software modules or plugins that can bring new functionality

to the end-users
✤ e.g. systems like Jenkins/Drupal/R provides a platform for developers

to contribute in an easy manner
✤ ROOT is 20 years old, and some parts requires re-engineering
✤ Contributions can be at the beginning on peripheral functionality and

later on the core functionality once we know the direction we are going
✤ Exploit modern hardware (many-core, GPU, etc.) to boost performance
✤ Modernize implementations (C++11 constructs, use existing libraries,

etc.)
✤ Need to solve the backward compatibility

3

ROOT Main Directions
✤ Cling Interpreter and its full exploitation

✤ C++11/14, JIT compilation opens many possibilities (e.g. TFormula, automatic
differentiation, improved interactivity, etc.)

✤ Parallelization
✤ Seek for any opportunity in ROOT to do things in parallel to better exploit the new

hardware (e.g. Ntuple processing, I/O, minimization, etc.)
✤ Packaging and modularization

✤ Incorporate easily third party packages (e.g. VecGeom in TGeom)
✤ Build/install modules and plugins on demand. Facilitate contributors to provide new

functionality
✤ ROOT as-a-service

✤ Thin client plugged directly into a ROOT supercomputing cloud, computing answers
quickly, efficiently, and without scalding your lap

✤ Re-thinking user interface
✤ Explore new ways to provide thin-client web-based user interfaces

4

Open to External Contributions
✤ Core team should define a model for defining modules extending the

functionality of ROOT
✤ Provides the ‘platform’ with a number of core modules  

with the basic functionality
✤ The ingredients are C++ introspection, modular build  

system, plugin system, flexible testing system
✤ Essential for making ROOT more open and  

encourage external people to contribute
✤ Authors may keep ownership of their modules and provide user support (e.g.

bug fixes, documentation)
✤ Core team ensures consistency and provides support for the full life-cycle

✤ Support for on-demand installation of packages (with one or more
modules)
✤ Like is currently done in R

5

Current examples are FISTIO, Ruby, …

Main ROOT distribution cases
✤ ROOT standalone with a number of ‘options’ enabled

✤ Typically end-users doing analysis with ROOT
✤ Building ROOT from sources should be simple (single command)

✤ Automatically including all the ‘core’ dependent packages on the same build
✤ Built-in package versions selected by ROOT team

✤ For the ‘options’ may need to provide external builds
✤ ROOT integrated as part of a larger software stack

✤ Experiment’s applications
✤ Typically all dependent packages are externally provided

✤ Only way to ensure consistency
✤ Versions selected by experiment librarians (within constrains)

6

HSF Services and Activities

7

Project hosting infrastructure Not needed

Building and testing infrastructure Not needed, except for esoteric platforms

Teams for certification and integration ROOT tested together with the rest of HEP software can be very
beneficial (e.g. LCG nightlies to test ROOT-6)

Software repositories and package
managers

ROOT uses a number of external packages and standardizing on a set of
package managers can be beneficial. ROOT may need to be adapted.

Access to computing resources on many
platforms and architectures Access to non-standard hardware, new hardware pre-views

Access to software development tools Yes

Training in software technologies and tools Coordination can be beneficial. We could provide training, materials, etc
for ROOT, and receive training for software technologies and tools.

Support for IP and licensing issues Not needed, but we should be ready to adapt to common practices

Peer reviews Often the ROOT team is invited to reviews. ROOT can also benefit from
external reviews

Access to scientific software journals Yes, we need to worry about the career of our developers
Agree on a common scientific software journal

Task forces or “SWAT” teams to solve
specific issues The ROOT team has participated often in such task forces

Consultancy for new experiments or
projects Often the ROOT team is invited to experiment discussions

