
fads
a (Go-based) FAst Detector Simulation toolkit

Sébastien Binet

LAL/IN2P3

2015-01-21

lal

S. Binet (LAL) go-fads 2015-01-21 1 / 14

fads

fads is a “FAst Detector Simulation” toolkit.

morally a translation of C++-Delphes into Go

a testbed for R&D in Go and concurrent frameworks

uses go-hep/fwk to expose, manage and harness concurrency into the usual
HEP event loop (initialize | process-events | finalize)

Code is on github (BSD-3):

https://github.com/go-hep/fwk

https://github.com/go-hep/fads

Documentation is served by godoc.org, Continuous Integration by drone.io

https://godoc.org/github.com/go-hep/fwk

https://godoc.org/github.com/go-hep/fads

S. Binet (LAL) go-fads 2015-01-21 2 / 14

https://cp3.irmp.ucl.ac.be/projects/delphes
https://golang.org
https://golang.org
https://github.com/go-hep/fwk
https://github.com/go-hep/fwk
https://github.com/go-hep/fads
https://godoc.org
https://drone.io/github.com/go-hep/fads/latest
https://godoc.org/github.com/go-hep/fwk
https://godoc.org/github.com/go-hep/fads

go-hep/fads - Installation

As easy as:

$ export GOPATH=$HOME/dev/gocode
$ export PATH=$GOPATH/bin:$PATH

$ go get github.com/go-hep/fads/...

Yes, with the ellipsis at the end, to also install sub-packages.

go get will recursively download and install all the packages that go-hep/fads
depends on. (no Makefile needed)

you get a statically linked executable in a matter of seconds (even for large
projects)

simple deployment and distribution

the speed of development of python with the speed of execution of C++

S. Binet (LAL) go-fads 2015-01-21 3 / 14

https://github.com/go-hep/fads

go-hep/fwk - Concurrency

go-hep/fwk enables:

event-level concurrency

tasks-level concurrency

go-hep/fwk relies on Go’s runtime to properly schedule goroutines.

For sub-task concurrency, users are by construction required to use Go’s constructs
(goroutines and channels) so everything is consistent and the runtime has the
complete picture.

Note: Go’s runtime isn’t yet NUMA-aware.
A proposal for Go-1.5 (June-2015) is in the works

S. Binet (LAL) go-fads 2015-01-21 4 / 14

https://github.com/go-hep/fwk
https://github.com/go-hep/fwk
https://golang.org
https://golang.org
https://golang.org
https://docs.google.com/document/d/1d3iI2QWURgDIsSR6G2275vMeQ_X7w-qxM2Vp7iGwwuM/pub

go-hep/fads - real world use case

translated C++-Delphes’ ATLAS data-card into Go

go-hep/fads-app

installation:
$ go get github.com/go-hep/fads/cmd/fads-app
$ fads-app -help
Usage: fads-app [options] <hepmc-input-file>

ex:
$ fads-app -l=INFO -evtmax=-1 ./testdata/hepmc.data

options:
-cpu-prof=false: enable CPU profiling
-evtmax=-1: number of events to process
-l="INFO": log level (DEBUG|INFO|WARN|ERROR)
-nprocs=0: number of concurrent events to process

S. Binet (LAL) go-fads 2015-01-21 5 / 14

https://cp3.irmp.ucl.ac.be/projects/delphes
https://github.com/go-hep/fads/blob/master/cmd/fads-app/main.go

go-hep/fads - components

a HepMC converter

particle propagator

calorimeter simulator

energy rescaler, momentum smearer

isolation

b-tagging, tau-tagging

jet-finder (reimplementation of FastJet in Go: go-hep/fastjet)

histogram service (from go-hep/fwk)

Caveats:

no real persistency to speak of (ie: JSON, ASCII and Gob)

jet clustering limited to N3 (slowest and dumbest scheme of C++-FastJet)

S. Binet (LAL) go-fads 2015-01-21 6 / 14

https://github.com/go-hep/fastjet
https://github.com/go-hep/fwk

S. Binet (LAL) go-fads 2015-01-21 7 / 14

Performances - testbenches

Linux: Intel(R) Core(TM)2 Duo CPU @ 2.53GHz, 4GB RAM, 2 cores

MacOSX-10.6: Intel(R) Xeon(R) CPU @ 2.27GHz, 172GB RAM, 16 cores

Linux: Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz, 40 cores

S. Binet (LAL) go-fads 2015-01-21 8 / 14

Linux (40 cores) testbench: memory

S. Binet (LAL) go-fads 2015-01-21 9 / 14

Linux (40 cores) testbench: event throughput

S. Binet (LAL) go-fads 2015-01-21 10 / 14

go-hep

S. Binet (LAL) go-fads 2015-01-21 11 / 14

go-hep project

A set of pure-Go or bindings to HEP libraries

go-hep/fads: fast detector simulation toolkit

go-hep/fastjet: jet clustering algorithms (WIP)

go-hep/fmom: 4-vectors

go-hep/fwk: concurrent framework

go-hep/hbook: histograms and n-tuples (WIP)

go-hep/hplot: interactive plotting (WIP)

go-hep/hepmc: HepMC in Go (EDM + I/O)

S. Binet (LAL) go-fads 2015-01-21 12 / 14

https://github.com/go-hep/fads
https://github.com/go-hep/fastjet
https://github.com/go-hep/fmom
https://github.com/go-hep/fwk
https://github.com/go-hep/hbook
https://github.com/go-hep/hplot
https://github.com/go-hep/hepmc

go-hep + astrogo projects

go-hep/hepevt: HEPEVT bindings

go-hep/heppdt: HEP particle data table

go-hep/lhef: Les Houches Event File format

go-hep/croot: bindings to a subset of ROOT I/O

go-hep/rio: go-hep record oriented I/O

go-hep/sio: LCIO I/O

go-hep/slha: SUSY Les Houches Accord I/O

astrogo/cfitsio: bindings to FITSIO

astrogo/fitsio: pure Go I/O for FITS files

astrogo/vo/votable: I/O for VOTable (WIP)

sbinet/hdf5: bindings to HDF5

S. Binet (LAL) go-fads 2015-01-21 13 / 14

https://github.com/go-hep/hepevt
https://github.com/go-hep/heppdt
https://github.com/go-hep/lhef
https://github.com/go-hep/croot
https://github.com/go-hep/rio
https://github.com/go-hep/sio
https://github.com/go-hep/slha
https://github.com/astrogo/cfitsio
https://github.com/astrogo/fitsio
https://github.com/astrogo/vo
https://github.com/sbinet/go-hdf5

go-hep & HSF

Most of development workflow already addressed (doc, CI, DVCS)
HSF could provide (from go-hep POV):

wider audience (users, developers)

test machines/architectures

storage area for input data (for tests) and/or (binary) releases

agreement on cross-language interoperability (file formats, data layout (POD)) in a
non pure-C++ environment

S. Binet (LAL) go-fads 2015-01-21 14 / 14

https://github.com/go-hep

	Main Talk
	mysection

