Computing Systems Roadmap and
its Impact on Software
Development

Michael Ernst, BNL
HSF Workshop at SLAC
20-21 January, 2015

Processor Die Scaling

* Package Power/total Energy consumption limits
number of Transistors

— Adding more cores & operating chips at highest
frequency power consumption would be prohibitive

— Keeping power within reasonable bounds severely
limits improvement in microprocessor performance

00
Unconstrained Evolution 100mm? Die /

£00
g .
= 300
=
E 200 /

100 /

0 M .

2002 2006 200 2014 2008

Optimization

Traditional approach: invest max transistors in the 90% case to
increase single-thread performance that can be applied broadly

New scaling regime (slow transistors, energy improvements)

— Makes no sense to add transistors to a single core as energy efficiency
suffers

— Using additional transistors to build more cores produces limited benefit
* Increased performance apps w/ thread parallelism

90/10 optimization no longer applies — Instead

— Optimizing w/ a 10% accelerator for a 10% case, then another for different
10% case, then another ... often produces a system w/ better overall energy
efficiency and performance -> “10 x 10 optimization”

— Operating the chip w/ 10% of transistors active / 90% inactive, but a
different 10% at each point in time

— 20 generations into Moore’s Law have shifted the balance
* Using a fraction of transistors on chip seems to be the right solution

System-on-a Chip (Tl)

Cb4x+ DSP Display Subsystem

and video
accelerators LCD Video 10-bit DAC

{3525}{353[} Un'.}f]l Controller Enc 10-bit DAC

Camera I/F
2D/3D Graphics

(3515/3530 only) Thioge Parallel I/F

L3/L4 Interconnect

Peripherals Connectivity System

USB20HS | USBHost oers
OTG Controller | Controller x2 WDT x2
Serial Interfaces Program/Data Storage

UART wf

Energy Efficiency is Driver for Performance

* Reality of finite energy budget for processors must produce
guantitative shift in how chip architects think

— Energy efficiency is key metric for design

— Energy-proportional computing must be ultimate goal for H/W architecture
and software-application design

* While this is recognized in macro-scale computing (large-scale data
centers), the idea of micro-scale energy-efficient computing in
Microprocessors is even more challenging

— With fixed energy budget this corresponds directly to higher performance
— Quest for extreme energy efficiency is ultimate driver for performance

Software Challenges renewed: Programmability
vs. Efficiency

* End of scaling of single-thread performance means

major software challenges

— Shift to symmetric parallelism caused greatest software
challenge in history of computing

— Pressure on energy-efficiency will lead to extensive use of
heterogeneous cores and accelerators

— Need/need to adopt high-level “productivity” languages built on
advanced interpretive and compiler technologies and increasing
use of dynamic translation techniques

* Trend: higher-level programming, extensive customization through
libraries, sophisticated automated performance search techniques
(i.e. autotuning)

Logic Organization Challenges, Trends, Directions

Challenge

Near-Term

Long-Term

Integration and
memory model

I/0-based interaction, shared memory
spaces, explicit coherence management

Intelligent, automatic data movement
among heterogeneous cores, managed
by software-hardware partnership

Software
transparency

Explicit partition and mapping,
virtualization, application management

Hardware-based state adaptation
and software-hardware partnership
for management

Lower-power
cores

Heterogeneous cores, vector extensions,
and GPU-like techniques to reduce
instruction- and data-movement cost

Deeper, explicit storage hierarchy within
the core; integrated computation in
registers

Energy Hardware dynamic voltage scaling Predictive core scheduling and selection

management and intelligent adaptive management, 10 optimize energy efficiency and
software core selection and scheduling minimize data movement

Accelerator Increasing variety, library-based Converged accelerators in a few

variety encapsulation (such as DX and OpenGL) application categories and increasing

for specific domains

open programmability for the
accelerators

Things that may Change

Due to energy consumption constraints

* Drop H/W support for single flat address space, single-
memory hierarchy, steady rate of execution

* Future systems will place components under S/W control

— Requires sophisticated S/W tools to manage H/W boundaries
and irregularities w/ greater energy efficiency

— High-performance applications may manage these complexities
explicitly
— Architectural features shift responsibility for distribution of

computation and data across compute and storage elements of
Microprocessors to software

— Improves energy efficiency but requires advances in
applications, compilers, runtime environments and OSs to
understand and predict application/workload behavior

* Advances require radical research breakthroughs & major changes in
S/W practices (next slide)

Software Challenges, Trends, Directions

Challenge Near-Term Long-Term

1,000-fold Data parallel languages and "mapping” New high-level languages,
software of operators, library and tool-based compositional and deterministic
parallelism approaches frameworks

Energy-efficient
data movement

Manual control, profiling, maturing to
automated techniques (auto-tuning,

New algorithms, languages,
program analysis, runtime,

and locality optimization) and hardware techniques

Energy Automatic fine-grain hardware Self-aware runtime and

management management application-level techniques that
exploit architecture features for
visibility and control

Resilience Algorithmic, application-software New hardware-software partnerships

approaches, adaptive checking and
recovery

that minimize checking and
recomputation energy

Conclusions - Microprocessors

Great old days of Moore’s Law scaling delivered 1,000 fold
performance improvement in 20 years

Pretty good new days will be more difficult

Frequency of operation will increase slowly

Few large cores, large number of small cores operating at low frequency
and low voltage

Aggressive use of accelerators will yield highest performance

Efficient data orchestration w/ more efficient memory hierarchies and new

types of interconnects tailored for locality will be critical

* Depends on sophisticated S/W to place computation and data so as to minimize data
movement

— Programming Systems will have to comprehend restrictions

and provide Tools & Environments to harvest the performance

Use of materials & technologies other than Si CMOS for processor
design will face challenges rendering the ones we’re fighting with today

a warm-up exercise for what lies ahead

Data Storage and Data Access

POSIX I/O becoming serious Impediment to I/0O performance
and scaling
— Hasn’t changed much in 26 years though world of storage evolves

— Change or relaxation could spur development of new storage
mechanisms to improve application performance, management,
reliability, portability, and scalability

ODMS not successful but provided valuable lessons
Object Storage Technology

— Scaling shared storage to extraordinarily levels of b/w & capacity w/o
sacrificing reliability or simple, low cost operations

— Key properties include variable length ordered sequence of
addressable bytes, embedded management of data layout, extensible
attributes and fine grain device-enforced access control

Resource Provisioning

 HEP facing Transition to more shared and Opportunistic
Resources provide through variety of Interfaces
— Effective use of diverse environments

— Perform provisioning of variety of different processing and storage
resources across dedicated, specialized, contributed, opportunistic
and purchased resources

» Compared to present situation Computing in HEP will become
a much less Static System

» Resource Providers will be continuously flowing in and out of
Distributed Computing Environments
» Key Issue is the Time it needs to register Resources and adopt
Applications
» Should be no longer than 10% of Execution Time

» APIs are key for creating new composite applications w/o developer
needing to know anything about underlying compute, network, and
storage resources. Application APIs make Saa$S possible

Networking

Next gen advanced Networked Apps will require network capabilities
and services far beyond what’s available from networks today

Dynamic network service topologies (overlays) with replication
capabilities

Resource management and optimization algorithms (e.g. available
network resources, load on depots)

Use of multi-constraint path finding algorithms to optimize
solutions

Network caching to optimize transfers and data access
— Let the network learn what jobs need (assuming overlapping interest)
— Dynamic, self-learning caches at major network exchange points

— “Named Data Networks” support content distribution
e Requests are routed based on content rather than file names mapped to IP addresses

