
Computing Systems Roadmap and
its Impact on Software

Development

Michael Ernst, BNL

HSF Workshop at SLAC

20-21 January, 2015

Processor Die Scaling

• Package Power/total Energy consumption limits
number of Transistors

– Adding more cores & operating chips at highest
frequency power consumption would be prohibitive

– Keeping power within reasonable bounds severely
limits improvement in microprocessor performance

Optimization

• Traditional approach: invest max transistors in the 90% case to
increase single-thread performance that can be applied broadly

• New scaling regime (slow transistors, energy improvements)
– Makes no sense to add transistors to a single core as energy efficiency

suffers

– Using additional transistors to build more cores produces limited benefit
• Increased performance apps w/ thread parallelism

• 90/10 optimization no longer applies – Instead
– Optimizing w/ a 10% accelerator for a 10% case, then another for different

10% case, then another … often produces a system w/ better overall energy
efficiency and performance -> “10 x 10 optimization”

– Operating the chip w/ 10% of transistors active / 90% inactive, but a
different 10% at each point in time

– 20 generations into Moore’s Law have shifted the balance
• Using a fraction of transistors on chip seems to be the right solution

System-on-a Chip (TI)

Energy Efficiency is Driver for Performance

• Reality of finite energy budget for processors must produce
quantitative shift in how chip architects think
– Energy efficiency is key metric for design

– Energy-proportional computing must be ultimate goal for H/W architecture
and software-application design

• While this is recognized in macro-scale computing (large-scale data
centers), the idea of micro-scale energy-efficient computing in
Microprocessors is even more challenging
– With fixed energy budget this corresponds directly to higher performance

– Quest for extreme energy efficiency is ultimate driver for performance

Software Challenges renewed: Programmability
vs. Efficiency

• End of scaling of single-thread performance means
major software challenges
– Shift to symmetric parallelism caused greatest software

challenge in history of computing

– Pressure on energy-efficiency will lead to extensive use of
heterogeneous cores and accelerators

– Need/need to adopt high-level “productivity” languages built on
advanced interpretive and compiler technologies and increasing
use of dynamic translation techniques

• Trend: higher-level programming, extensive customization through
libraries, sophisticated automated performance search techniques
(i.e. autotuning)

Logic Organization Challenges, Trends, Directions

Things that may Change
Due to energy consumption constraints
• Drop H/W support for single flat address space, single-

memory hierarchy, steady rate of execution
• Future systems will place components under S/W control

– Requires sophisticated S/W tools to manage H/W boundaries
and irregularities w/ greater energy efficiency

– High-performance applications may manage these complexities
explicitly

– Architectural features shift responsibility for distribution of
computation and data across compute and storage elements of
Microprocessors to software

– Improves energy efficiency but requires advances in
applications, compilers, runtime environments and OSs to
understand and predict application/workload behavior
• Advances require radical research breakthroughs & major changes in

S/W practices (next slide)

Software Challenges, Trends, Directions

Conclusions - Microprocessors

• Great old days of Moore’s Law scaling delivered 1,000 fold
performance improvement in 20 years

• Pretty good new days will be more difficult
– Frequency of operation will increase slowly
– Few large cores, large number of small cores operating at low frequency

and low voltage
– Aggressive use of accelerators will yield highest performance
– Efficient data orchestration w/ more efficient memory hierarchies and new

types of interconnects tailored for locality will be critical
• Depends on sophisticated S/W to place computation and data so as to minimize data

movement

– Programming Systems will have to comprehend restrictions
and provide Tools & Environments to harvest the performance

• Use of materials & technologies other than Si CMOS for processor
design will face challenges rendering the ones we’re fighting with today
a warm-up exercise for what lies ahead

Data Storage and Data Access

• POSIX I/O becoming serious Impediment to I/O performance
and scaling

– Hasn’t changed much in 26 years though world of storage evolves

– Change or relaxation could spur development of new storage
mechanisms to improve application performance, management,
reliability, portability, and scalability

• ODMS not successful but provided valuable lessons

• Object Storage Technology

– Scaling shared storage to extraordinarily levels of b/w & capacity w/o
sacrificing reliability or simple, low cost operations

– Key properties include variable length ordered sequence of
addressable bytes, embedded management of data layout, extensible
attributes and fine grain device-enforced access control

Resource Provisioning
• HEP facing Transition to more shared and Opportunistic

Resources provide through variety of Interfaces
– Effective use of diverse environments
– Perform provisioning of variety of different processing and storage

resources across dedicated, specialized, contributed, opportunistic
and purchased resources

 Compared to present situation Computing in HEP will become
a much less Static System
 Resource Providers will be continuously flowing in and out of

Distributed Computing Environments

 Key Issue is the Time it needs to register Resources and adopt
Applications
 Should be no longer than 10% of Execution Time
 APIs are key for creating new composite applications w/o developer

needing to know anything about underlying compute, network, and
storage resources. Application APIs make SaaS possible

Networking

Next gen advanced Networked Apps will require network capabilities
and services far beyond what’s available from networks today

• Dynamic network service topologies (overlays) with replication
capabilities

• Resource management and optimization algorithms (e.g. available
network resources, load on depots)

• Use of multi-constraint path finding algorithms to optimize
solutions

• Network caching to optimize transfers and data access
– Let the network learn what jobs need (assuming overlapping interest)

– Dynamic, self-learning caches at major network exchange points

– “Named Data Networks” support content distribution
• Requests are routed based on content rather than file names mapped to IP addresses

