HSF and the Future Circular Collider

Benedikt Hegner (CERN)

HEP Software Foundation Workshop 20.1.2015

FCC - Future Circular Collider Software

 Newly started software effort to support the design study on multiple detector concepts for both the FCC-hh and FCC-ee collider project

Conceptual Design reports targeted for 2018

- The FCC experiments are starting SW efforts from scratch, right?
 - Well, yes and no...
 - All FCC needs to solve has been solved elsewhere already

- One needs to pick and choose wisely
- Develop new things only when it is worth it
- Areas to find solutions for
 - Development environment
 - Core Framework
 - I/O
 - Simulation
 - Detector Description
 - Reconstruction
 - Data Model
 - Analysis

- The FCC experiments are starting SW efforts from scratch, right?
 - Well, yes and no...
 - All FCC needs to solve has been solved elsewhere already

- One needs to pick and choose wisely
- Develop new things only when it is worth it
- Areas to find solutions for
 - Development environment CMake + Github
 - Core Framework
 - **I/O**
 - Simulation
 - Detector Description
 - Reconstruction
 - Data Model
 - Analysis

- The FCC experiments are starting SW efforts from scratch, right?
 - Well, yes and no...
 - All FCC needs to solve has been solved elsewhere already

- One needs to pick and choose wisely
- Develop new things only when it is worth it
- Areas to find solutions for
 - Development environment CMake + Github
 - Core Framework Gaudi
 - **I/O**
 - Simulation
 - Detector Description
 - Reconstruction
 - Data Model
 - Analysis

- The FCC experiments are starting SW efforts from scratch, right?
 - Well, yes and no...
 - All FCC needs to solve has been solved elsewhere already

- One needs to pick and choose wisely
- Develop new things only when it is worth it
- Areas to find solutions for
 - Development environment CMake + Github
 - Core Framework Gaudi
 - I/O ROOT based
 - Simulation
 - Detector Description
 - Reconstruction
 - Data Model
 - Analysis

- The FCC experiments are starting SW efforts from scratch, right?
 - Well, yes and no...
 - All FCC needs to solve has been solved elsewhere already

- One needs to pick and choose wisely
- Develop new things only when it is worth it
- Areas to find solutions for
 - Development environment CMake + Github
 - Core Framework Gaudi
 - I/O ROOT based
 - Simulation mainly Geant4
 - Detector Description
 - Reconstruction
 - Data Model
 - Analysis

- The FCC experiments are starting SW efforts from scratch, right?
 - Well, yes and no...
 - All FCC needs to solve has been solved elsewhere already

- One needs to pick and choose wisely
- Develop new things only when it is worth it
- Areas to find solutions for
 - Development environment CMake + Github
 - Core Framework Gaudi
 - I/O ROOT based
 - Simulation mainly Geant4
 - Detector Description DD4Hep
 - Reconstruction
 - Data Model
 - Analysis

- The FCC experiments are starting SW efforts from scratch, right?
 - Well, yes and no...
 - All FCC needs to solve has been solved elsewhere already

- One needs to pick and choose wisely
- Develop new things only when it is worth it
- Areas to find solutions for
 - Development environment CMake + Github
 - Core Framework Gaudi
 - I/O ROOT based
 - Simulation mainly Geant4
 - Detector Description DD4Hep
 - Reconstruction not yet there; intention to re-use LHC and ILC code
 - Data Model
 - Analysis

- The FCC experiments are starting SW efforts from scratch, right?
 - Well, yes and no...
 - All FCC needs to solve has been solved elsewhere already

- One needs to pick and choose wisely
- Develop new things only when it is worth it
- Areas to find solutions for
 - Development environment CMake + Github
 - Core Framework Gaudi
 - I/O ROOT based
 - Simulation mainly Geant4
 - Detector Description DD4Hep
 - Reconstruction not yet there; intention to re-use LHC and ILC code
 - Data Model LCIO a good model, but see a need for new generation
 - Analysis

- The FCC experiments are starting SW efforts from scratch, right?
 - Well, yes and no...
 - All FCC needs to solve has been solved elsewhere already

- One needs to pick and choose wisely
- Develop new things only when it is worth it
- Areas to find solutions for
 - Development environment CMake + Github
 - Core Framework Gaudi
 - I/O ROOT based
 - Simulation mainly Geant4
 - Detector Description DD4Hep
 - Reconstruction not yet there; intention to re-use LHC and ILC code
 - Data Model LCIO a good model, but see a need for new generation
 - Analysis ROOT and Python solutions from CMS physicists

- The open-source culture and the openness of developers allowed rapid progress so far!
 - Parameterized simulation working
 - Detector definition for full simulation ongoing
- However, this is based on non-sustainable single person efforts and good-will
 - Think of the timescales involved!
 - Who guarantees that used software doesn't disappear?
- A lot of low-level plumbing as there is no central HEP SW distribution
 - LCG external releases were very helpful there, but that's only the start
- Would have liked to see a more complete inventory of existing software with validated interoperability to choose from
- The development environment is very ad-hoc
 - There is no single place offering all what is needed

- Not much to offer to the community yet
- But no legacy either
- We are a natural guinea pig to test the generalization of existing tools and have a strong interest in playing this role for the HSF
- A review of our approaches is something we would be asking the HSF soon
 - Are there any community "standards" we missed?
 - What should we do in new software so that it can be useful for others?