Needs and Considerations for a consortium of accelerator modeling

Jean-Luc Vay

Accelerator Technology & Applied Physics Division

Lawrence Berkeley National Laboratory

HEP Software Foundation Workshop, SLAC January 21, 2015

Designs of accelerators are limited by what we can build, afford and compute!

Computer modeling is essential for:

- optimizing existing accelerators
- cost effective design
- devel. game changing technologies

Trend requires team work

increasingly complex accelerators call for increasingly sophisticated simulation software

- Current situation is inefficient
 - numerous codes within projects with little coordination or reuse
 - no dedicated funding for development, support & training
 - especially problematic for codes with growing popularity

New initiative

Consortium for Advanced Modeling of Particle Accelerators

Mission:

- develop, maintain, distribute & support an integrated suite of state-of-the-art accelerator computer codes
- promote collaboration & re-use of codes & data through common interfaces, data standards, visualization and analysis capabilities;
- use codes to advance accelerator science through advanced computation
- **train** new generation in accelerator modeling on the latest hardware

CAMPA started as LBNL-SLAC collaboration

Consortium for Advanced
Modeling of Particle
Accelerators

Points of contact:

LBNL: J.-L. Vay, J. Qiang

SLAC: C.-K. Ng, Z. Li

Initial investment by U.S. DOE-HEP:

- \$250k in FY14 for LBNL-SLAC

Expanded to LBNL-SLAC-FNAL collaboration

Consortium for Advanced
Modeling of Particle

Accelerators

CAMPA

Points of contact:

LBNL: J.-L. Vay, J. Qiang

SLAC: C.-K. Ng, Z. Li

FNAL: J. Amundson, E.G. Stern

Initial investment by U.S. DOE-HEP:

- \$250k in FY14 for LBNL-SLAC
- \$500k in FY15 for LBNL-SLAC-FNAL

Need of solution for non-disruptive integration

Significant investments of HEP into existing pool of codes:

- essential to minimize disruptions to developers and users,
- while enabling interoperability and expandability.

Challenges:

Technical

- programming languages
- data formats, parallelism
- code architectures
- open vs proprietary sources
- keep creativity

Human

- changing habits is hard
- different visions
- (re)build trust
- corporatism/rivalry
- recognition
- distance

Mitigation of difficulties through adiabatic transition

Existing set of separate codes \rightarrow ecosystem of interconnected codes

Bridge codes to enable:

- unified input/output interface
- sharing of functionalities
- •collaborative development of common units
- "natural" down selection of modules
- devel. & users playing Lego with "code genes"

Common modules in libraries of compiled C, C++ or FORTRAN

Unified I/O and framework in Python:

- Python scripting language has unique attributes:
 - rapid development and prototyping of scientific applications is expandable and couples to FORTRAN, C and C++

Possible evolution of CAMPA

US DOE-HEP Forum for Computational Excellence/ International HEP Software Foundation

Integrated set of codes & libraries (algorithms, physics, utilities, ...) Partnership with CS and AM (DOE-ASCR, SciDAC ComPASS, etc)

HSF/FCE/CAMPA are synergistic – looking forward to cross-benefits!

Extras

Example of duplication in beam dynamics codes

Beam Dynamics Codes:

Codes section from Accelerator Handbook (A. Chao, 2013)

(Below, PIC refers to codes with particle-in-cell space-charge capability.)

Code	URL or Contact	Description/Comments
ASTRA	tesla.desy.de/~meykopff	3D parallel, general charged particle beams incl. space charge
AT	sourceforge.net/projects/atcollab/	Accelerator Toolbox
BETACOOL	betacool.jinr.ru	Long term beam dynamics: ECOOL, IBS, internal target
Bmad, Tao	www.lns.cornell.edu/~dcs/bmad/	General purpose toolbox library + driver program
COSY INFINITY	www.cosyinfinity.org	Arbitrary-order beam optics code
CSRTrack	www.desy.de/xfel-beam/csrtrack	3D parallel PIC; includes CSR; mainly for e- dynamics
Elegant/SDDS suite	aps.anl.gov/elegant.html	parallel; track, optimize; errors; wakes; CSR
ESME	www-ap.fnal.gov/ESME	Longitudinal tracking in rings
HOMDYN	Massimo.Ferrario@LNF.INFN.IT	Envelope equations, analytic space charge and wake fields
IMPACT code suite	amac.lbl.gov	3D parallel multi-charge PIC for linacs and rings
LAACG code suite	laacg.lanl.gov	Includes PARMILA, PARMELA, PARMTEQ, TRACE2D/3D
LiTrack	www.slac.stanford.edu/~emma/	Longitudinal linac dynamics; wakes; GUI-based; error studies
LOCO	safranek@slac.stanford.edu	Analysis of optics of storage rings; runs under matlab
LUCRETIA	www.slac.stanford.edu/accel/ilc/codes	Matlab-based toolbox for simulation of single-pass e- systems
MaryLie	www.physics.umd.edu/dsat	Lie algebraic code for maps, orbits, moments, fitting, analysis
MaryLie/IMPACT	amac.lbl.gov	3D parallel PIC MaryLie optics + IMPACT space charge
MAD-X	mad.web.cern.ch/mad	General purpose beam optics
MERLIN	www.desy.de/~merlin	C++ class library for charged particle accelerator simulation
OPAL	amas.web.psi.ch	3D parallel PIC cyclotrons, FFAGs, linacs; particle-matter int.
ORBIT	jzh@ornl.gov	Collective beam dynamics in rings and transport lines
PATH	Alessandra.Lombardi@cern.ch	3D PIC; linacs and transfer lines; matching and error studies
SAD	acc-physics.kek.jp/SAD/sad.html	Design, simulation, online modeling & control
SIMBAD	agsrhichome.bnl.gov/People/luccio	3D parallel PIC; mainly for hadron synchrotrons, storage rings
SIXTRACK	frs.home.cern.ch/frs/	Single particle optics; long term tracking in LHC
STRUCT	www-ap.fnal.gov/users/drozhdin	Long term tracking w/ emphasis on collimators
Synergia	https://compacc.fnal.gov/projects	3d parallel PIC: space charge, nonlinear tracking and wakes
TESLA	lyyang@bnl.gov	Parallel; tracking; analysis; optimization
TRACK	www.phy.anl.gov/atlas/TRACK	3D parallel PIC mainly for ion or electron linacs
LIBTRACY	libtracy.sourceforge.net/	Library for beam dynamics simulation
TREDI	www.tredi.enea.it	3D parallel PIC; point-to-point Lienard-Wiechert
UAL	code.google.com/p/ual/	Unified Accelerator Libraries
WARP	DPGrote@lbl.gov	3D parallel ES and EM PIC with accelerator models
ZGOUBI	sourceforge.net/projects/zgoubi/	Magnetic optics; spin; sync radiation; in-flight decay

Value added to science, agencies, users & developers

Accelerator S. & T.

- offers path toward game changer modeling tools
 - virtual prototyping/experiments
 - online modeling for realtime feedback
- → speed up design and innovation

DOE

- accelerate discovery
 - → higher return on investment
- single point of contact for modeling tool funding

Code users

- integrated, comprehensive & more capable (multiphysics/multiscale) software
- single point of contact for simulation tool solutions

Code developers

- dedicated funding for user support, algorithmic, code implementation & maintenance
- recognition for acc. software development,
- a carrier path