
www.ci.anl.gov
www.ci.uchicago.edu

1

www.ci.anl.gov
www.ci.uchicago.edu

Building Scientific Software
Communities

Daniel S. Katz

d.katz@ieee.org @danielskatz

Computation Institute, University of Chicago & Argonne National
Laboratory

(much content adapted from Open Source Summit 3:
Ben Balter, Github & Jim Jagielski, Apache &

Joseph Porcelli, GovDelivery & notes from http://ossummit.org/)

www.ci.anl.gov
www.ci.uchicago.edu

2

My Experience

• Working towards Sustainable Software for Science:
Practice and Experiences (WSSSPE)
– http://wssspe.researchcomputing.org.uk

o https://github.com/danielskatz/WSSSPE

o WSSSPE1 report
– http://dx.doi.org/10.5334/jors.an (but...)
– http://openresearchsoftware.metajnl.com/article/view/jors.an

• Application Skeletons
– https://github.com/applicationskeleton/Skeleton
– http://dx.doi.org/10.5281/zenodo.13750 (again but...)

• NSF – http://www.nsf.gov/si2
• Open source is a not a panacea

– Technology isn’t difficult
o But people can be

Building Scientific Software Communities

www.ci.anl.gov
www.ci.uchicago.edu

3

Building Open Source Communities

• Be committed & energetic leader/visionary

• Be clear about what you want

• Engage community

• Increase engagement

• Track engagement activities towards project
goals

Building Scientific Software Communities

Adapted from Joseph Porcelli

www.ci.anl.gov
www.ci.uchicago.edu

4

Be Clear About What You Want

• Treat an open source project like a political
campaign

– Paint a vision

– Say where you want to go

– Ask for help in getting there

• Requires ongoing involvement of
team/community leaders

– “Governance”

Building Scientific Software Communities

Adapted from Joseph Porcelli

www.ci.anl.gov
www.ci.uchicago.edu

5

Governance & Communities

• Walled Garden

– Open source through license only, no real
community

– Often run by corporation

– Can have focused design, good usage

– Apple app store as example

Adapted from Jim Jagielski

Building Scientific Software Communities

www.ci.anl.gov
www.ci.uchicago.edu

6

Governance & Communities

• Benevolent Dictatorship

– One person has ultimate say

– Ideally light touch, influence, final decisions

– Mandate from the community (who can leave if not
satisfied)

– Linux kernel best known example, also common in
languages

o Question about long-term sustainability
– Do new people want to join?

– What happens when dictator leaves?

Adapted from Jim Jagielski

Building Scientific Software Communities

www.ci.anl.gov
www.ci.uchicago.edu

7

Governance & Communities

• Meritocracy

– Flat layer of peers

– Forces the community to work together

– Provides a neutral place for individuals and
companies to work together

– Merit earned by deeds, not position or reputation

– Example: all Apache projects

• Each project may have a “natural” governance
model

Adapted from Jim Jagielski

Building Scientific Software Communities

www.ci.anl.gov
www.ci.uchicago.edu

8

Engage Community

• Why?
– More hands -> quicker work

– More minds -> better solutions

• Engagement: meaningful and valuable actions that
produce a measurable result

• Engagement = Motivation + Support – Friction
– Intrinsic motivation: self-fulfillment, altruism, satisfaction,

accomplishment, pleasure of sharing, curiosity, real
contribution to science

– Extrinsic motivation: job, rewards, recognition, influence,
knowledge, relationships, community membership

– Support: ease, relevance, timeliness, value

– Friction: technology, time, access, knowledge

Building Scientific Software Communities

Adapted from Joseph Porcelli

www.ci.anl.gov
www.ci.uchicago.edu

9

Reduce Friction: Project Setup

• Reduce Friction

– Do: Use a familiar license

– Do: Spell things out in the project readme

– Do: Include a LICENSE.txt file

– Do: Include a CONTRIBUTING.md file

– Don’t: Require a Contributor License Agreement

– Do: explain context, relationship to other projects

o What software/services do you think are available to use

o What do you plan to build

Building Scientific Software Communities

Adapted from Ben Balter

www.ci.anl.gov
www.ci.uchicago.edu

10

Copyright

• Creators have exclusive rights, including
– Reproduce (copies)

– Create derivative works

– Distribute copies

– Perform/display publicly

– Sell/assign rights to others (license)

– Transmit

• Since 1979, copyright is automatic at time of
creation (at least in US)

• Can’t copyright ideas, only embodiments

Building Scientific Software Communities

Adapted from Ben Balter

www.ci.anl.gov
www.ci.uchicago.edu

11

Licensing

• Distinguishes rights & use from ownership

– What can and can’t I do with your code

– If I contribute, what rights do I waive?

(think of it like an apartment lease)

• Software Licensing

– Describe what rights I’m granting to you

– Disclaim that if something goes wrong with the code,
you can’t sue me

– Require you to include the license if you redistribute my
software

– Technically, you can create your own license, but don’t

Building Scientific Software Communities

Adapted from Ben Balter

www.ci.anl.gov
www.ci.uchicago.edu

12

Licenses

• Generally include “credit me”

• MIT, BSD, Apache (permissive)
– Explicitly grant nearly unlimited rights

o Do what you want, including the copyright and permission notices,
don’t blame/sue the copyright holder if there are problems

• GPL (copyleft, viral)
– Includes “make source available”

– derivative works must be GPL (if distributed)

• Dual licensing
– Usually GPL and something else

– Users can choose under which terms project is licensed

– Easier to incorporate within other, already licensed projects

Building Scientific Software Communities

Adapted from Ben Balter

www.ci.anl.gov
www.ci.uchicago.edu

13

Licensing to Build Communities

• Always license the project

• Coders don’t want to give away their code

• Minimize ambiguity, show you speak the
language

• Use a familiar license (read: MIT)

– Include a LICENSE.txt file

Building Scientific Software Communities

Adapted from Joseph Porcelli

www.ci.anl.gov
www.ci.uchicago.edu

14

Reduce Friction: Increase Contributions

• Make it possible for people to contribute with the
least time and effort
– Reduce acronyms

– Put a "how to contribute" file in every project

– Need to show developers how they can contribute, even
if they aren't technical/science experts

– Developers should be able to get the system running on
their machine with little effort, e.g. manual dependency
management

– Tell everyone (not just developers) how they can
contribute according to whatever they can provide, such
as users, those who are interested, testers, educators,
evangelists, etc.

Building Scientific Software Communities

Adapted from Joseph Porcelli

www.ci.anl.gov
www.ci.uchicago.edu

15

Reduce Friction: Increase Contributors

• Make all contributors equal
– Internal team and external team doesn’t work
– Make all communication electronic and open to all contributors

• Develop/find leaders
– Put together of a list of people who have been giving the most

thoughtful responses – potential leaders
– When someone invests, invest back
– Need to keep bringing people in, and finding the leaders
– Say thank you - easy but remarkably effective in encouraging

communities

• Make clear, public statements about the community and
culture
– Ask the community to assist with developing these, then ask the

community to validate the results

• Help other leaders grow and trust the community

Building Scientific Software Communities

Adapted from Joseph Porcelli

www.ci.anl.gov
www.ci.uchicago.edu

16

Increase Engagement

• Try – failing is learning

• Ask – what’s working, what’s next, what would
help, what’s missing, would you be willing to get
involved to make it happen, who else should be
involved

• Communicate – Engage more and better with
engaging email/posts

• Metrics – analyze metrics to guide activities

• Iterate – Apply lessons learned, continually

Building Scientific Software Communities

Adapted from Joseph Porcelli

www.ci.anl.gov
www.ci.uchicago.edu

17

Track engagement activities

– Web views

– E-mails,

– Tickets created

– Tickets closed

– Questions answered

– Documentation created

– Training given

– Code contributions

– Code contributors

– Science discoveries

Building Scientific Software Communities

Adapted from Joseph Porcelli

www.ci.anl.gov
www.ci.uchicago.edu

18

Gamification

• Ideally used to increase engagement

• Define specific measurable goals

• Bring in new people
– Give them simple things to do first, and reward them

for completing them

– Welcome them

– Let them try things out before signing up

• Keep them
– Personalize interactions

– Thank them

– Focus on intrinsic rewards

Building Scientific Software Communities

www.ci.anl.gov
www.ci.uchicago.edu

19

Conclusions

• Technology for open source is available

• Psychology is even more important

• Small choices can have large effects

– Think about consequences when naming and
describing your project, choosing license,
governance, repo/wiki/web, etc.

• Make choices that satisfy intrinsic motivation

• Reduce friction

• Define outcomes, try, measure, change

Building Scientific Software Communities

www.ci.anl.gov
www.ci.uchicago.edu

20

Questions?

• Now or later

– d.katz@ieee.org

– @danielskatz

Building Scientific Software Communities

