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My Experience 

• Working towards Sustainable Software for Science: 
Practice and Experiences (WSSSPE) 
– http://wssspe.researchcomputing.org.uk 

o https://github.com/danielskatz/WSSSPE 

o WSSSPE1 report 
– http://dx.doi.org/10.5334/jors.an (but...) 
– http://openresearchsoftware.metajnl.com/article/view/jors.an 

• Application Skeletons 
– https://github.com/applicationskeleton/Skeleton 
– http://dx.doi.org/10.5281/zenodo.13750 (again but...) 

• NSF – http://www.nsf.gov/si2 
• Open source is a not a panacea 

– Technology isn’t difficult 
o But people can be 
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Building Open Source Communities 

• Be committed & energetic leader/visionary 

• Be clear about what you want 

• Engage community 

• Increase engagement 

• Track engagement activities towards project 
goals 

Building Scientific Software Communities 

Adapted from Joseph Porcelli 



www.ci.anl.gov 
www.ci.uchicago.edu 

4 

Be Clear About What You Want 

• Treat an open source project like a political 
campaign 

– Paint a vision 

– Say where you want to go 

– Ask for help in getting there 

• Requires ongoing involvement of 
team/community leaders 

– “Governance” 

Building Scientific Software Communities 
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Governance & Communities 

• Walled Garden 

– Open source through license only, no real 
community 

– Often run by corporation 

– Can have focused design, good usage 

– Apple app store as example 

Adapted from Jim Jagielski 
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Governance & Communities 

• Benevolent Dictatorship 

– One person has ultimate say 

– Ideally light touch, influence, final decisions 

– Mandate from the community (who can leave if not 
satisfied) 

– Linux kernel best known example, also common in 
languages 

o Question about long-term sustainability 
– Do new people want to join? 

– What happens when dictator leaves? 

Adapted from Jim Jagielski 
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Governance & Communities 

• Meritocracy 

– Flat layer of peers 

– Forces the community to work together 

– Provides a neutral place for individuals and 
companies to work together 

– Merit earned by deeds, not position or reputation 

– Example: all Apache projects 

 

• Each project may have a “natural” governance 
model 

Adapted from Jim Jagielski 
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Engage Community 

• Why? 
– More hands -> quicker work 

– More minds -> better solutions 

• Engagement: meaningful and valuable actions that 
produce a measurable result 

• Engagement = Motivation + Support – Friction 
– Intrinsic motivation: self-fulfillment, altruism, satisfaction, 

accomplishment, pleasure of sharing, curiosity, real 
contribution to science 

– Extrinsic motivation: job, rewards, recognition, influence, 
knowledge, relationships, community membership 

– Support: ease, relevance, timeliness, value 

– Friction: technology, time, access, knowledge 

 
Building Scientific Software Communities 
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Reduce Friction: Project Setup 

• Reduce Friction 

– Do: Use a familiar license 

– Do: Spell things out in the project readme 

– Do: Include a LICENSE.txt file 

– Do: Include a CONTRIBUTING.md file 

– Don’t: Require a Contributor License Agreement 

– Do: explain context, relationship to other projects 

o What software/services do you think are available to use 

o What do you plan to build 

Building Scientific Software Communities 
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Copyright 

• Creators have exclusive rights, including 
– Reproduce (copies) 

– Create derivative works 

– Distribute copies 

– Perform/display publicly 

– Sell/assign rights to others (license) 

– Transmit  

 

• Since 1979, copyright is automatic at time of 
creation (at least in US) 

• Can’t copyright ideas, only embodiments 

Building Scientific Software Communities 
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Licensing 

• Distinguishes rights & use from ownership 

– What can and can’t I do with your code 

– If I contribute, what rights do I waive? 

(think of it like an apartment lease) 

• Software Licensing 

– Describe what rights I’m granting to you 

– Disclaim that if something goes wrong with the code, 
you can’t sue me 

– Require you to include the license if you redistribute my 
software 

– Technically, you can create your own license, but don’t 

Building Scientific Software Communities 
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Licenses 

• Generally include “credit me” 

• MIT, BSD, Apache (permissive) 
– Explicitly grant nearly unlimited rights 

o Do what you want, including the copyright and permission notices, 
don’t blame/sue the copyright holder if there are problems 

• GPL (copyleft, viral) 
– Includes “make source available” 

– derivative works must be GPL (if distributed) 

• Dual licensing 
– Usually GPL and something else 

– Users can choose under which terms project is licensed 

– Easier to incorporate within other, already licensed projects 

Building Scientific Software Communities 
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Licensing to Build Communities 

• Always license the project 

• Coders don’t want to give away their code 

• Minimize ambiguity, show you speak the 
language 

• Use a familiar license (read: MIT) 

– Include a LICENSE.txt file 

Building Scientific Software Communities 
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Reduce Friction: Increase Contributions 

• Make it possible for people to contribute with the 
least time and effort 
– Reduce acronyms 

– Put a "how to contribute" file in every project 

– Need to show developers how they can contribute, even 
if they aren't technical/science experts 

– Developers should be able to get the system running on 
their machine with little effort, e.g. manual dependency 
management 

– Tell everyone (not just developers) how they can 
contribute according to whatever they can provide, such 
as users, those who are interested, testers, educators, 
evangelists, etc. 

Building Scientific Software Communities 
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Reduce Friction: Increase Contributors 

• Make all contributors equal 
– Internal team and external team doesn’t work 
– Make all communication electronic and open to all contributors 

• Develop/find leaders 
– Put together of a list of people who have been giving the most 

thoughtful responses – potential leaders 
– When someone invests, invest back 
– Need to keep bringing people in, and finding the leaders 
– Say thank you - easy but remarkably effective in encouraging 

communities 

• Make clear, public statements about the community and 
culture 
– Ask the community to assist with developing these, then ask the 

community to validate the results 

• Help other leaders grow and trust the community 

Building Scientific Software Communities 
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Increase Engagement 

• Try – failing is learning 

• Ask – what’s working, what’s next, what would 
help, what’s missing, would you be willing to get 
involved to make it happen, who else should be 
involved 

• Communicate – Engage more and better with 
engaging email/posts 

• Metrics – analyze metrics to guide activities 

• Iterate – Apply lessons learned, continually 

 

Building Scientific Software Communities 

Adapted from Joseph Porcelli 



www.ci.anl.gov 
www.ci.uchicago.edu 

17 

Track engagement activities 

– Web views 

– E-mails, 

– Tickets created 

– Tickets closed 

– Questions answered 

– Documentation created 

– Training given 

– Code contributions 

– Code contributors 

– Science discoveries 
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Gamification 

• Ideally used to increase engagement 

• Define specific measurable goals 

• Bring in new people 
– Give them simple things to do first, and reward them 

for completing them 

– Welcome them 

– Let them try things out before signing up 

• Keep them 
– Personalize interactions 

– Thank them 

– Focus on intrinsic rewards 

Building Scientific Software Communities 
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Conclusions 

• Technology for open source is available 

• Psychology is even more important 

• Small choices can have large effects 

– Think about consequences when naming and 
describing your project, choosing license, 
governance, repo/wiki/web, etc. 

• Make choices that satisfy intrinsic motivation 

• Reduce friction 

• Define outcomes, try, measure, change 

Building Scientific Software Communities 
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Questions? 

 

• Now or later 

– d.katz@ieee.org 

– @danielskatz 
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