
LCLS Data Systems

Amedeo Perazzo

SLAC

HSF Workshop, January 20th 2015

2

LCLS Source Fluctuations (movie)

Spatial Spectral Temporal

Per pulse readout of detectors and diagnostics is crucial

LCLS Parameters

X-Ray range 250 to 11,300 eV

Pulse length < 5 - 500 fs

Pulse energy ~ 4 mJ

Repetition
Rate

120 Hz

HSF Workshop: LCLS Data Analysis 4

LCLS Data Infrastructure

 DAQ systems dedicated per hutch, user analysis system shared across

instruments

 Four storage layers

 Online cache (flash), fast-feedback (disk), medium term (disk), long term

(tape)

 Medium-term storage currently 5 petabytes

 Each PB aggregated throughput of 12GB/sec

 Long-term storage uses tape staging system in the SLAC central

computing facilities

 Can scale up to several petabytes

 Science data files policies:

 Kept on disk for 2 years (quota enabled after 6 months), on tape for 10

years

 Access to the data for each experiment granted only to members of that

experiment

 60 teraflop processing farm

HSF Workshop: LCLS Data Analysis

High Bandwidth Cluster Storage
(5 petabyte)

iRODS
File Manager

XTC to HDF5
Translation

HPSS
(20PB+)

Databases

Web Apps &
Services

Data Transfer
Nodes

AMO DAQ

SXR DAQ

.

.
XPP DAQ

Analysis
Farms

(60 teraflop)

ESNET

Data
Acquisition

Data Systems Architecture

Automatic

On demand

User directed

Calibration

HSF Workshop: LCLS Data Analysis

 Data Management system handles all content-opaque operations

 Moves data across storage layers (online cache, fast-feedback, offline storage, tape)

 Handles data policies (security, access, retention)

 Handles DAQ generated data or data resulted from centralized processing (eg HDF5

translation, compression, filtering)

 File catalog and tape operations are based on iRODS

 File migration implemented as a collection of distributed services written primarily in

Python

 Using LSF for processing HDF5 translation services and other operations

 Currently handling 11PB LCLS data, raw and user generated

 5PB on disk, 6PB on tape

 User accessible through LCLS web-portal (electronic logbook)

 Web front-end based on HTML5, CSS3, JavaScript, and a bunch of modern JavaScript

tolkits/libraries

 Server-side backend: RESTful Web services, mostly PHP and relevant libraries, Pylons

(Python-based Web framework for some Web services), MySQL, LDAP and Apache

LCLS Data Management Framework

HSF Workshop: LCLS Data Analysis

 Main data analysis framework is psana

 Event-driven batch framework to parse the raw data

 Allows mixing of python and C++ modules

 Powerful, but, until recently, not widely adopted, threshold too high for many users

 Many groups used myana (simple C++ program developed by DAQ group to parse

the raw data), Matlab, ami (this is the the same framework used for on-the-fly

data monitoring but run against data on disk), cass (originally developed for

CAMP detector) and cheetah (CFEL)

 Beside parsing the data, currently providing basic capabilities:

 Calibration modules

 Modules for time-correlation analysis

 Data browser

 Peak finding algorithms

 We are currently looking at two main projects in the data analysis arena:

 Develop advanced algorithms for LCLS users

 Build an ecosystem for data analysis at FEL facilities

LCLS User Data Analysis

HSF Workshop: LCLS Data Analysis 8

LCLS User Data Analysis (continued)

Developed python based interactive framework ipsana to complement the psana batch

framework
Adoption of psana significantly increased after ipsana was introduced:

• Can write analysis code with simple python scripts

• All documentation on one page:
https://confluence.slac.stanford.edu/display/PSDM/psana+-

+Python+Script+Analysis+Manual

 Can run the same simple scripts

offline and online (with real-time

plotting)

 Can analyze a run (online and offline)

in parallel on hundreds of cores using

MPI

 Many experiments have used this to

analyze all 120Hz, online in real-time

Lesson Learned 1 or Why Vetoing Events for FEL

Experiments Can Be Tricky

 Very hard to implement effective trigger/veto system

 Not a technical/computing issue: the ability to veto events is already

implemented in the system

 Vetoing based on beam parameters not effective (most pulses are good)

 Hard to get help from users in setting veto parameters which define event quality

 Users themselves often don't know what these parameters or their

thresholds should be

 Users are usually very suspicious of anything which can filter data on-the-

fly

 Benefit of vetoing events based on the event data potentially very

large for those experiments with low hit rate

 factor 10-100

Lesson Learned 2 or Why HEP Style Online-Offline is

Not Enough

 HEP style online/offline separation doesn't work

 The core online monitoring is not enough for many experiments

 The skill level required to write on-the-fly analysis code is too high for most

users

 As a consequence some experiments felt they were flying blind

 Critical to provide users the ability to run offline style code for fast

feedback

 This was an issue for:
 High data volume combined with low hit rate experiments: offline designed to

keep up with DAQ only in average, not instantaneously; fast feedback nodes

which look at subset of the data don't provide enough statistics

 HDF5 based experiments: must wait for additional translation step

