The gLite Workload Management System

Abstract. The gLite Workload Management System (WMS) is a collection of components
that provide the service responsible for distributing and managing tasks across computing and
storage resources available on a Grid. The WMS basically receives requests of job execution
from a client, finds the required appropriate resources, then dispatches and follows them until
completion. This is done handling failure in between and whenever possible. Other than
single batch-like jobs, compound job types handled by the WMS are Directed Acyclic Graphs
(a set of jobs where the input/output/execution of one of more jobs may depend on one
or more other jobs), Parametric Jobs (multiple jobs with one parametrized description), and
Collections (multiple jobs with a common description). Jobs are described via a flexible, high-
level Job Definition Language (JDL). New functionality was recently added to the system (use
of Service Discovery for obtaining new service endpoints to be contacted, automatic sandbox
files archival/compression and sharing, support for bulk-submission and bulk-matchmaking).
Intensive testing and troubleshooting allowed to dramatically increase both job submission rate
and service stability. Future developments of the gLite WMS will be focused on reducing external
software dependency, improving portability, robustness and usability.

ANDREETTO, Paolo (INFN); ANDREOZZI, Sergio (INFN);
AVELLINO, Giuseppe (DATAMAT); BECO, Stefano (DATAMAT);
CAVALLINI, Andrea (DATAMAT); CECCHI, Marco (INFN);
CIASCHINI, Vincenzo (INFN); DORISE, Alvise (INFN);
GIACOMINI, Francesco (INFN); GIANELLE, Alessio (INFN);
GRANDINETTI, Ugo (DATAMAT); GUARISE, Andrea (INFN);
KROP, Andrea (DATAMAT); LOPS, Roberto (INFN);
MARASCHINI, Alessandro (DATAMAT); MARTELLI, Vincenzo
(INFN); MARZOLLA, Moreno (INFN); MEZZADRI, Marco
(INFN); MOLINARI, Elisabetta (INFN); MONFORTE, Salvatore
(INFN); PACINI, Fabrizio (DATAMAT); PAPPALARDO, Marco
(INFN); PARRINI, Andrea (DATAMAT); PATANIA, Giuseppe
(INFN); PETRONZIO, Luca (DATAMAT); PORCIANI, Maurizio
(DATAMAT); PRELZ, Francesco (INFN); REBATTO, David
(INFN); RONCHIERI, Elisabetta (INFN); SGARAVATTO, Massimo
(INFN); VENTURI, Valerio (INFN); ZANGRANDO, Luigi (INFN)

1. Introduction

Scheduling of distributed, data-driven applications in a Grid environment is a challenging
problem in the diverse domains of workload management, resource discovery, matchmaking
and brokering, accounting, authorization policies, resource access, reliability and dependability.
Although significant results were achieved in the past few years, the development and the proper
deployment of generic, robust, reliable and standard components operating on worldwide scale,
has brought out non trivial issues requiring joint efforts with a strong degree of cooperation to



be worked out.

All these issues are currently being tackled within the EU-funded EGEE project (Enabling Grids
for E-science in Europe) [1] - now at its second phase, EGEE-II - whose primary goals are the
provision of robust middleware components and the creation of a quality Grid infrastructure to
support e-Science applications. It is a large scale project built on previous European projects
and on national, regional and thematic initiatives with an extensive programme of middleware
re-engineering that has resulted in a consolidated software stack, gLite [2].

The Workload Management System is one of the key Grid services composing the glite
middleware stack. It has been designed with some fundamental principles in mind: first of all
aiming to provide a dependable and reliable service, never losing track of jobs to be processed
and always providing a prompt, responsive quality of service yet keeping up with huge and
even growing factors of scale. It is designed as part of a Service Oriented Architecture (SOA)
complying with Web-Service Interoperability (WS-I) [3] specifications and strives to implement
recommendations on web service foundations made by the Open Grid Forum (OGF) [4].
Fundamental to any Grid environment is the ability to discover, allocate and monitor the use of
resources. The term ”workload management” is commonly used to describe all those aspects that
involve discovering resources all over the Grid and selecting the most suitable ones, arranging
for submission, monitoring and information gathering. In this respect, the WMS has to deal
with a heterogeneous computing scenario that in general encompasses different architectures and
loss of centralised control also in presence of potential faults due to the distributed and diverse
nature of the Grid environment, computers, networks and storage devices.

In this paper we will show what has been achieved to provide adequate workload and
management components, suitable to be deployed in a production-quality Grid, covering the
design and development of the glLite WMS with respect to functionality, interoperability and
reliability. We also report on achieved results eventually outlining possible future directions.

2. Functionality

The glite Workload Management System (WMS) provides a service responsible for the dis-
tribution and management of tasks across resources available on a Grid, in such a way that
applications are conveniently, efficiently and effectively executed. These tasks, that basically re-
quest computation and storage, are usually referred to as ”jobs”. The WMS supports different
types of jobs:

e Single batch jobs

e DAGs: jobs with dependencies expressed as a direct acyclic graph. This is implemented
using DAGMan, a meta-scheduler from the Condor [5] suite, whose purpose is to navigate
the dependency graph determining the order in which the nodes are to be executed, then
following the execution of the corresponding jobs where each instance is inserted into and
handled by a Condor queue.

e Collections: sets of independent jobs sharing similar requirements that can be matched in
clusters according to some significant attributes and then tracked with a single handle

e MPI: based on message passing interface - a widely-used library to allow parallel
programming

e Interactive: establishing a synchronous two way communication with the user on a socket
stream

e Parametric: allowing multiple jobs to be defined by a single description with attributes
varying with a parameter



The characteristics of a job are defined using a flexible and expressive formalism called Job
Description Language (JDL) [6]. The JDL is based on Classified Advertisements or ClassAds
[7], developed within the Condor project, which consist basically of a list of key/value pairs that
represent the various characteristics of a job (input files, arguments, executable, etc.) as well as
its requirements, constraints and preferences (memory, operating system, etc.).

Jobs are always associated with user proxy credentials and the job-dependent operations are
performed on behalf of the user. glite in general and the WMS in particular exploit experience
and existing components from the VDT (Virtual Data Toolkit from Condor and Globus [8]).
Condor plays a significant role in the present architecture as a job submission and tracking layer
(see later), while the Globus Security Infrastructure (GSI) is used throughout.

A mechanism also exists to renew credentials automatically and safely for long-running jobs. It
is possible in fact that long jobs may outlive the validity of the initial proxy; if so and the proxy
is not renewed, the job will die prematurely. To avoid this the WMS allows the proxy to be
renewed automatically when the user allowed his credentials to be managed by a service called
MyProxy [9].

Submitting a job actually means passing its responsibility to the WMS whose purpose is then to
find the appropriate resources matching the requirements, watching and directing the job on its
way to completion, with particular attention to infrastructure failures requiring resubmission.
The WMS will in the end forward the job to one or more appropriate Computing Elements (CE)
for execution. The decision about which resource is adequate to run the job is the outcome of a
match-making process between the ”demand”, represented by the submission requirements and
preferences, and the ”offer”, represented by the characteristics of the available resources. In case
a match between a job and one or more suitable CEs is not found, the job is kept pending by
the WMS and periodically retried until the request expires.

The Grid is a complex system and things can go wrong at various stages throughout. The
WMS has some ability to both prevent and recover from failures. While using persistent data
structures helps never losing track of the user’s incoming or pending requests, resubmission
of failed jobs gives the user a higher degree of reliability about the final outcome of his jobs.
Resubmission can be achieved at two levels. ”Shallow” resubmission is utilised in those cases
where an error occurs before the CE has started executing the job, in which case another CE
can be tried immediately without any worry to compromise the results. This will also reduce
the probability to have multiple instances of the same job over the Grid due to temporary loss
of contact. ”Deep” resubmission happens when a job fails after it starts running; this can be
more problematic as the job may well have done a considerable amount of processing, producing
output files or making other state changes, and may have consumed a significant amount of
time. Users can therefore choose the number of times they will allow the job to be resubmitted
in these two ways with two JDL parameters.

Besides request submission, the WMS also implements request management and control
functionality such as cancellation and output retrieval. Another feature exists to list all the
available resources matching a given job at a given time. Request status follow-up can be
instead achieved through the Logging & Bookeeping service [10]. The WMS tightly depends on
the L&B services.

The various job management tasks mentioned so far are executed by different processes or threads
that communicate via persistent data structures [Figure 1]. One core component is the Match-
Maker, which sorts out a list of resources suitable for the given requirements. These resources
may include Storage Elements (SE) if the user specified the need to manipulate data. The list
of the resources that match the specified requirements is sorted in order of decreasing rank, and
the highest-ranked resource will in general be chosen. The ranking criteria are provided by the
user in the JDL. To compensate the delay in the update of the status of Batch Systems in the
Information System (which can cause the uneven distribution of short bursts of jobs, always



being assigned to the top ranked resource), a so called ”fuzzy rank” stochastic algorithm can be
used to perform a random selection among the matching resources - weighted according to their
actual rank - yielding a smoother distribution of the load.

Access to some dataset can be specified as part of the job requirements, as well as the need to
have the job running ”close” to some specific Storage Element. The WMS also allows to specify
requirements on the Storage Elements that provide the requested data via a ”gang”-matching
function. While matchmaking is made between two parties, typically the job and the computing
resource - gang-matching allows to take into account the characteristics of multiple kind of
resources (e.g. the SEs as well), as provided by the Information System. Gangmatching is a
very important feature that in practice allows users to submit their jobs always being sure that
they will land where their data reside. In comparison with most of the alternative approaches for
the implementation of a WMS - whose designs tipically tend to be unaware of the distribution of
data across the Grid - gangmatching certainly represents a plus. Data location is an important
aspect that affects the scheduling process itself, especially given the fact that - with the current
scales and dimensions - it would be uncoinceivable to have all the data replicated for each CE
(or even for a significant number of CEs) all over the Grid.

In general, more or less "eager” or ”lazy” policies can be adopted for scheduling. At one extreme,
eager scheduling dictates that a job is bound to a resource as soon as possible and, once the
decision has been taken, the job is passed to the selected resource(s) for execution, where, very
likely, it will end up in some queue. This mechanism is usually referred to as 'push mode’. At
the other extreme, lazy scheduling foresees that the job is held by the WMS until a resource
becomes available, at which point that resource is matched against the submitted jobs and the
job that fits best is passed to the resource; this is called 'pull mode’.

The implementation feature that allows the flexible application of different policies is the
decoupling between the collection of information about resources and its use. The component
that implements this mechanism is called Information Supermarket (ISM) which basically
consists of a repository of resource information, all residing in memory, whose update is the result
of either the arrival of notifications or active polling of resources or some arbitrary combination
of both from different source of Information Providers. Moreover, the ISM can be configured
so that certain notifications can trigger the matchmaking process itself, thus supporting the
implementation of lazy scheduling policies. The ISM represents one of the specific improvements
to the WMS as inherited from the EDG [11] (and LCG) projects where the information was
collected in real-time, contacting Information Providers for each single request, which is less
efficient and reliable.

Reflecting the demand-offer /job-resource symmetry, all the job requests are kept in a struc-
ture called *Task Queue’, similarly to what happens for resources, where they queue up and wait
to call or to be called for a match. This also allows to hold a submission request if no matching
resources are immediately found and provides a necessary mechanism for the support of lazy
scheduling policies. Non-matching, waiting requests will be retried either periodically or as soon
as notifications of available resources get to the ISM according to the adopted scheduling model.
A limiter mechanism based on system vital parameters such as load, disk and memory usage,
network activity etc. has also been recently implemented to protect the system from congestion
by preventing new requests from being accepted after reaching some configurable thresholds.
Experience has shown that always accepting new requests that can make little or no way to
progress deteriorates performance inevitably leading to a state of general unresponsiveness of
the whole system whose specific trigger is very hard to predict and can vary significantly de-
pending on the nature of the requests being processed: this calls for a feedback mechanism based
on system-wide vital statistics.

Here is a summary of non-trivial functionality implemented by the glLite WMS:



e Resubmission: shallow or deep
e Bulk-matchmaking
e Fuzzy ranking

e Support for MPI jobs even if the file system is not shared between CE and Worker Nodes
(WN)

e Support for execution of all DAG nodes within a single CE - chosen by either user or by
the WMS match-maker

e Support for file peeking to access files during job execution
e Load limiting mechanism to prevent system congestion
e Automatic sandbox files archiving/compression and sharing between jobs

e Gang-matching to include Storage Elements in the match-making process.

3. Interoperability

Given the typically large number of different parties involved in a Grid infrastructure, interop-
erability plays a key role to facilitate establishing and coordinating agreements and interactions
between them. In this respect, the WMS, especially by virtue of his central, mediating role,
has to deal with a wide variety of people, services, protocols and more, ranging from users -
belonging to different VOs - to other services of the EGEE/gLite infrastructure and to other
Grids as well.

For what concerns users, to be able to allow interaction adhering to the SOA model, a Sim-
ple Object Access Protocol (SOAP) Web Service has been implemented, its interface being
described through a Web Service Description Language (WSDL) specification written in accor-
dance to the WS-I profile. It replaced a legacy network interface based on a proprietary protocol.
This Web Service manages user authentication/authorization and operation requests. It runs in
an Apache container extended with the FastCGI and GridSite modules. The FastCGI module
implements Common Gateway Interface (CGI) functionality along with some other specific fea-
tures. FastCGI applications are able to serve, in a multiprocessing fashion, multiple requests,
where instances can be dynamically spawned or terminated according to the demand. In par-
ticular, an additional control mechanism over unpredictable error conditions such as undefinite
hanging has been implemented to automatically terminate a serving process of the pool after a
given configurable number of requests. Moreover, the Grid Site module provides an extension
to the Apache Web Server for use within Grid frameworks by adding support for Grid Security
Infrastructure (GSI), the Virtual Organization Membership Service (VOMS) [12] and file trans-
fer over HTTPS. It also provides a library for handling Grid Access Control Lists (GACL).

On the topic of interoperation with other Grid services, it is worth to first describe in more de-
tail how job management is accomplished by the WMS. A service called Job Submission Service
(JSS) is responsible to actually forward the job to the chosen resource and monitor its execu-
tion. The submission tool to the CE in current use is based on Condor-G and is responsible for
performing the actual job management operations. Every CE supported by Condor-G is then
implicitly supported by the WMS as well, in particular the LCG CE (pre-WS Condor-G plus
GRAM on the CE) and the gLite CE (pre-WS Condor-G plus Condor-C, or just Condor on the
CE). A monitoring service, part of the JSS, is also responsible for watching the Condor log files
intercepting interesting events concerning active jobs, events affecting the job state machine and
triggering appropriate actions. After the recent development of CREAM [13], a new WS-I/BES
[14] compliant CE, a new JSS component, called ICE, has been introduced to peer CREAM and
manage jobs. CREAM has a WS-based interface, extension of the Java-Axis servlet running
inside an Apache Tomcat container. This allows interoperability through WSDL. Accordingly,
ICE is a gSOAP /C++ layer which will securely send job operations to a CREAM CE. In doing



S0, it subscribes to the CEMon service in order to asynchronously receive notifications about
job status changes. In case some notifications are lost, ICE also performs synchronous status
polling for unresponsive jobs.

Interoperation with Information Providers can be achieved either syncronously or asyncronously
for those providers who support it. We actually provide interfacing with the Berkeley Database
Information Index (BDII), CeMon (synchronously and asynchronously) and Relational Grid
Monitoring Architecture (R-GMA). As mentioned earlier, all resource information, however col-
lected, is gathered in the Information Supermarket for caching.

For job definition, the WMS also fully endorses the Job Submission Description Language
(JSDL). This is an emerging OGF standard which aims to facilitate interoperability in het-
erogeneous environments, through the use of an XML based job description language that is
free of platform and language bindings. The JSDL language contains a vocabulary and norma-
tive XML Schema that facilitate the expression of those requirements as a set of XML elements.
While JSDL serves the same purpose and has semantics comparable to the current ClassAd-
based JDL, its adoption as an OGF approved standard makes it a good candidate for support
by the WMS system.

On the front of interoperabily between Grids, some work has recently been done to be able to in-
tegrate the Open Science Grid within the EGEE project. A significant number of OSG resources
are now properly seen by the gLite Information Systems thanks to a fruitful and coordinated
joint-effort. The first tests of job submission were encouragingly successful. This interoperability
requirement has required a further level of abstraction to be implemented in the WMS jobwrap-
per (the shell script generated by the WMS which surrounds the user job execution and performs
basic setup and cleanup operations, downloading/uploading the sandbox, setting the execution
environment, logging etc.). Due to the diverse nature of resources belonging to one or more
Grids, the jobwrapper script must be kept as simple and as robust as possible. The jobwrapper
script may be running in an unfriendly worker node environment where no or little assumption
can be made on what is available. Again, due to the pivotal role of this script, a significant work
has also been done to extend it in order to encompass all the different requirements expressed by
the involved parties (users, VOs and resources) without losing functionality nor generality. To
achieve this, a clean set of hooks was provided in the jobwrapper generation procedure, allowing
specific customisations to be inserted by users, VO managers and site administrators. This
approach reduces hard-coding without limiting functionality. For users, prologue and epilogue
scripts have been included - these are run before and after the job is executed - basically with
the intent of letting them set and clean up the proper environment for their jobs; for VOs, a
hook is present to retrieve the proper middleware version; for resource managers, customization
points are disseminated throughout the script.

Here’s a summarized view of the functionality provided in the areas of integration with other
services and interoperability:

e Backward compatibility with LCG-2

e Automatic renewal of credentials

e GridFTP and HTTPS to handle secure file transfer for the sandbox
e Service Discovery for obtaining new service endpoints to be contacted

e Support of different mechanisms to populate the ISM from several sources (BDII, R-GMA,
CeMon)

e Support for submission and monitoring for the LCG, gLite and CREAM CEs

e Support for Data management interfaces (DLI and StorageIndex)



Support for JSDL
Interoperability with the american Open Science Grid (OSG)

Integration with D-GAS - a Grid accounting system

Integration with G-Pbox [15] - a Grid policy framework

User prologue/epilogue, VO and resource hooks to be run by the jobwrapper in the WN.

4. Reliability and performance

Thorough testing and an intense troubleshooting activity, which required a remarkable degree of
collaboration with end users that had access to resource sets of large enough scale, we were able
to significantly increase job submission rates and service stability. A new release of the WMS
(3.1) is being deployed, as of late 2007, instrumented with all the features and optimizations
coming from this recent, intense work. A special mention has to be spent for the introduction of
the bulk-submission and matchmaking features. Originally, in fact, all collections were managed
trasforming them into a 2-level DAG having dependencies pointing from each leaf to a root node.
The way DAGman was used within our architecture was convenient at first but overdesigned,
in the end not efficient for handling disjoint jobs with no dependedencies among them. Keeping
resource under control in our application of DAGMan also required to apply workarounds (e.g.
global limit on the number of planner processes, as DAGman provides no throttles that apply
to node pre- and post-script execution). Reimplementing job collection handling to be directly
managed by the WMS (sort of generalizing the submission of a single job to the submission of
a set of jobs to be matched together in one single shot) has boosted performance and improved
reliability. For the sake of clarity, the set of jobs specified by the collection is split into subsets
identified by the equivalence classes generated by the specification - explicitly done by the user
- of some ”significant” attributes whose literal equality identifies equivalent jobs. A typical
use-case for specifying significant attributes could be, as an example, parting the original set on
”Requirements” and ”Rank”.

Much of the effort dedicated to the testing was accomplished on the internal (development)
test beds and on the Preview Test Bed, which also includes new components not yet ready to
be deployed in production. In addition, a new approach to testing proved to be very effective.
Scaling up to full production and real use cases from the experiments required, in fact, extensive
troubleshooting and some additional development. A new concept, the Experimental Service,
then emerged as a pragmatic testbed to be attached to the production infrastructure, by a
selected number of users and immediately installed with all patches available from the developers.
As of Easter 2007, the glLite WMS has proven to fulfill the performance and stability
requirements expressed earlier this year by the acceptance criteria of the CMS and ATLAS
experiments: a single WMS machine would need to sustain submission rates of at least 10K
jobs/day (both with bulk and single job submission) with a failure rate less than 0.5% over a
period of 5 days of continuous operation, with no manual interventions or restarts of the WMS
services (and the L&B as well). During the 7 days when the tests were performed by CMS,
some 115,000 jobs were submitted, yelding a throughput of 16,000 jobs/day (which is about
50% more than required) [Figure 2|. The limiter mechanism mentioned above kicked in a couple
of times preventing further submission (but keeping the WMS system in a safe operation area).
All but 320 jobs were properly carried out (0.3% failure rate). The resources were promptly
reached, without appreciable delays and with a negligible fraction of failures due to the gLite
WMS (most reported errors were application errors or site problems). On a later stress-test of
the bulk submission the average throughput reached over one day was of 27,000 jobs.

Single job submission is also an important use-case for the submission of a limited number of
jobs from a huge number of different users. It is also important to study how submission & MM
times do actually scale in the present architecture. From the latest results, always performed



by CMS, some 20,000 job/day have been submitted over a period of 11 days, reaching peaks of
22,000 jobs/day of throughput [Figure 3].

5. Current and future work

A significant part of the EGEE-II work has been devoted to portability, integration and
deployment. In this respect, much effort was concentrated on the glLite 3.1 release and the
completion of its transition to the ETICS integrated build and configuration system [16], started
in January 2007. The vast majority of the 32-bit gLite 3.1 release properly builds on ETICS and
the 64-bit build issues are mostly being understood at the time of writing; also, there is ongoing
work on the run-time testing of 64-bit nodes. This has allowed to address platform portability
as well, i.e. the migration to Scientific Linux 4 (SL4). Platform portability was improved to the
point that would make it easier to target any other kind of linux platfom at this point. Also,
from the gcc run-time version in SL4, the WMS will particularly benefit from the optimized
memory management for STL containers (memory/speed for list, red-black trees as used by
sets and maps) which have a large effect when large number of resources populate the ISM.
An alternate allocator [17], optimized for multi-threaded applications, has also been adopted to
keep memory usage stable, hence not fragmented by the caching in ”per-thread arenas”, where
deallocated memory is retained for later usage by the standard C allocator (ptmalloc2).
Support for some unused features (such as checkpointable and partitionable jobs) has been
discontinued and some legacy components deprecated (like the Network Server, the legacy
proprietary interface). A general restructuring of the code has started, triggered by the sharp
decision to migrate to ETICS. This restructuring is not meant as an architectural change (all
interfaces are preserved), but boils down to a desirable simplification of the stack that will
simplify future work, including incorporation of additional functionalities and porting to new
platforms.

There is still ongoing work to further prevent and correct faulty situations for both services
and jobs that might arise from increased activity. This involves improving reliability with a
particular eye to implementing effective recovery mechanisms for all the supported job types.
No matter how high the throughput of a single WMS instance, higher orders of performance
can always be reached, in a future scenario, by simply adding up new instances and referencing
them in a round-robin fashion. In such a configuration, all the WMSes will be equally aware
of the overall status of the Grid and their composition will cause neither interference nor
fragmentation of the overall resource offer - something that can represent a scalabilty concern
for other competing architectures. On the contrary, with the present model, performance will
scale up almost linearly - the selection of an appropriate instance also being favored by the
triggering of the load limiter which will make the User Interface switch to another WMS when
needed (amongst a predefined given list or even using Service Discovery to proactively find active
services), enabling in this way a further level of high-availability and load balancing.

6. Conclusions

The gLite WMS is designed and implemented to provide a dependable, robust and reliable
service adopting open standards to promote interoperability among Grid services and allowing
easier compliance with emerging protocols. The phase that ended with the acceptance test and
the certification of the glite WMS 3.1 provides a satisfactory platform, instrumented with a set
of added-value features on top of Job Submission and with the flexibility of a Service Oriented
Architecture. Development continues by integrating some missing functionalities (especially
for the handling of collections), simplifying the code by reducing dependencies and keeping up
with the standardization avnd definition of Grid services, procedures and protocols. We will
also continue facing the challenge of reaching even higher levels of performance, scalability and
reliability to find us prepared to meet the growing demand of the EGEE infrastructure.



References

[1] http://www.eu-egee.org/

[2] http://glite.web.cern.ch/glite/

[3] http://www.ws-i.org/

[4] http://www.ogf.org/

[5] M.J Litzkow, M. Livny and M.W. Mutka, Condor-A hunter of idle workstations, Proceedings of the 8th
International Conf. On Distributed Computing, San Jose, CA USA (1988), pp. 104-111

[6] JDL Attributes Specification, https://edms.cern.ch/document/590869/1, EGEE-JRA1-TEC-590869-JDL-
Attributes-v0-4

[7] http://www.cs.wisc.edu/condor/classad/

[8] www.globus.org

[9] J. Novotny, S. Tuecke, V. Welch, An Online Credential Repository for the Grid: MyProzy, IEEE International
Symposiumon High Performance Distributed Computing; 2001 Aug 79; San Francisco, CA USA, pp. 104-114

[10] F. Dvorak, D. Kouril, A. Krenek, L. Matyska, M. Mulac, J. Pospisil, M. Ruda. Z. Salvet, J. Sitera, J. Skrabal,
M. Vocu et. al., Services for Tracking and Archival of Grid Job Information, CGWO05, Cracow - Poland,
November 20 - 23, 2005

[11] DataGrid WP1 members (G. Avellino et al.), The first deployment of workload management services on the
EU DataGrid Testbed: feedback on design and implementation., Computing in High Energy and Nuclear
Physics (CHEP’03), San Diego, March 24-28, 2003

[12] V. Chiaschini et al., An Integrated Framework for VO-oriented Authorization, Policy-based Management and
Accounting, Computing in High Energy and Nuclear Physics (CHEP’06), T.I.F.R. Mumbai, India, February
13-17, 2006.

[13] P. Andreetto, S. A. Borgia, A. Dorigo, A. Gianelle, M. Marzolla, M. Mordacchini, M. Sgaravatto, L.
Zangrando et. al., CREAM: a simple, Grid-accessible, job management system for local computational
resources, Computing in High Energy and Nuclear Physics (CHEP’06), T.I.LF.R. Mumbai, India, February
13-17, 2006.

[14] http://grid.pd.infn.it/NA5/bes-wg.html

[15] V. Ciaschini, A. Ferraro, A. Ghiselli, G. Rubini, A. Caltroni, A. Guarise, An integrated framework for VO-
oriented authorization, policy-based management and accounting

[16] M. E. Begin and et al., Build, configuration, integration and testing tools for large software projects: FEtics,
Springer Verlag Lecture Notes in Computer Science (LNCS) Series, LNCS 4401, pages 81-97, 2007.

[17] http://goog-perftools.sourceforge.net/

Figures

Data
management

submit Job submission

e

and monitoring

Logging &
Information ISM bookkeeping
supermarket updater

Notify Access policies
availability Submit management
monitor

Job request

Computing update Information
system

element

Figure 1. The glite WMS internal architecture and its interactions with other Grid Services



Number of jobs in each status vs. time

30000

jobs

Cancelled
Cleared
Aborted
Done (Failed)
Done (Exit)

Done (Success)

25000

Running
Scheduled
Ready
‘Waiting
Submitted

JEER I

20000

15000

10000

5000

0 5 10 15 20 25
time (hours)

Figure 2. The cumulative number of processed jobs on one day of the week of the acceptance
test

1886080

T T T

Canceled ——

Aborted ——

Done - Failed ——

168688 -Done = Success ——

Running ———
Scheduled

Ready
140000 - Maiting

Subnitted
120080
108080
8o0ooo
Ga888

400688

208868

25 26 27 28 29 36 31 a1 az a3 a4 a5 86

Figure 3. Sustained throughput of 20kjob/day over a whole week on a benchmark by CMS on
single job submission



